The present disclosure relates to liquid filtration, in particular to a device and method for filtering a liquid and holding the filtrate separately.
In the modern medical world, it has become an increasing importance to analyze a physiological fluid e.g. blood, urine and the like. For this purpose, it is necessary to separate or filter one or more solid substances from the fluid.
Two different conventional arrangements for filtering the liquid are shown in
In
Numerous modern systems have been developed to separate the components in the liquid. For example, centrifugation is a technique to separate components from a solution by applying a centrifugal force according to their size, shape, density, viscosity of the medium and rotor speed. In this method, two miscible substances can be separated and hydrodynamic properties of macromolecules can be analyzed.
United States Patent No.: U.S. Pat. No. 4,154,690 A discloses a device for use in centrifugal separation of components of a liquid. The device includes a separator element slidable within a cylindrical container containing the liquid. As the container is subjected to centrifugation, a portion of the container in contact with the separator element flexes to allow the liquid to pass through a space between the separator element and the flexed portion and to enable the separator element to slide towards a bottom of the container.
PCT Patent Application No.: PCT/DK2010/050056 discloses a device for extracting a sample from a collection media with an increased yield compared to the centrifugation technique. After centrifugation, a solution is subjected through two or more filtering processes for separating the sample from the collection medium.
There is, nevertheless, a continuing interest in providing improved and alternative devices to those which are presently generally available.
There is therefore a need in the art for a device for filtering a liquid and holding the filtrate in a simple, efficient and cost-effective way. There is also a need for a device for filtering a liquid without a need for any powered actuator for applying a pressure for filtering, while minimizing clogging of a filtering medium.
The present disclosure proposes a device and method for filtering a liquid and holding filtrate in a simple, efficient and cost-effective way. The device does reverse-filtration without using any powered actuator for applying a pressure for filtering, while minimizing clogging of a filtering medium.
The device comprises a container, a filter unit and a filtering medium. The container holds the liquid which contains at least one solid substance. The filter unit is axially slidable in the container. The filtering medium is provided at a bottom portion of the filter unit and is non-permeable to the solid substance in the liquid.
According to an embodiment, when the container is being slid into the filter unit the liquid passes through the filtering medium and enters the filter unit. The container is formed with a first fastening part, and the filter unit is formed with a second fastening part matching with the first fastening part. When the container and the filter unit are being fastened to each other, the liquid passes through the filtering medium and gets held in the filter unit.
According to an embodiment, the fastening parts together form a mechanical fastener such as a threaded fastener and snap-fit fastener.
According to an embodiment, the filtering medium is removably attached to a bottom of the filter unit.
According to an embodiment, at least a portion of an inner side surface of the container is configured, such that at least a portion of an outer side surface of the filter unit frictionally, axially slides over the inner side surface of the container to form an air-tight seal with the inner side surface of the container, when the filter unit is slid in the container. Further, the solid substance in the liquid is sandwiched between a bottom surface of the filtering medium and an inner bottom surface of the container, when the container and the filter unit are fastened to each other.
According to an alternate embodiment, the filter unit includes a top portion and a bottom portion, wherein the filtering medium is embedded in a side wall of the bottom portion.
According to a further embodiment, the bottom portion of the filter unit is axially slidably attached to the top portion of the filter unit.
Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
In the figures, similar components and/or features may have the same reference numerals. Further, various components of the same type may be distinguished by following the reference numerals with a second numeral that distinguishes among the similar components. If only the first reference numeral is used in the specification, the description is applicable to any one of the similar components having the same first reference numeral irrespective of the second reference numeral.
In accordance with the present disclosure, there is provided a device for filtering a liquid, which will now be described with reference to the embodiments shown in the accompanying drawings. The embodiments do not limit the scope and ambit of the disclosure. The description relates purely to the embodiments and suggested applications thereof.
The embodiments herein and the various features and advantageous details thereof are explained with reference to the non-limiting embodiment in the following description. Descriptions of well-known components and processes are omitted so as to not unnecessarily obscure the embodiments herein. The examples used herein are intended merely to facilitate an understanding of ways in which the embodiments herein may be practiced and to further enable those of skill in the art to practice the embodiment herein. Accordingly, the description should not be construed as limiting the scope of the embodiment herein.
The description hereinafter, of the specific embodiment will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify or adapt or perform both for various applications such specific embodiment without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation.
Various terms as used herein are defined below. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the pertinent art have given that term as reflected in printed publications and issued patents at the time of filing.
Filtering: A process of separating a component from another component or from a mixture of multiple components.
Reverse-filtration: A process of forcing a filtrate to move in a direction other than the direction of gravity.
Solid substance: Any natural or synthetic substance in solid, or powder form.
The present disclosure relates to a device. Those skilled in the art would appreciate that various embodiments of the present disclosure enable. Embodiments herein enable filtering the liquid and holding the filtrate in a simple, efficient and cost-effective way without a need for any powered actuator e.g. pump, for applying a pressure for filtering, while minimizing clogging of a filtering medium.
The present invention does reverse-filtration, wherein the filtrate is made to pass through the filtering medium in a direction other than the direction of gravity while pushing the residue in an opposite direction, and therefore chances of clogging in the filtering medium is minimized without compromising with filtrate quality. Further, pressure required for filtering the liquid is exerted from the fastening action, thus filtering and collecting the filtrate in the filter unit simultaneously, while preventing re-mixing of the filtrate with the residue sandwiched between the container and the filter unit.
Referring to the accompanying drawings,
As shown in
A filtering medium (130) is provided at a bottom of the filter unit (120), wherein the filtering medium (130) is non-permeable to the solid substance (10a, shown in
In an exemplary embodiment, the filtering medium (130) is formed as a bottom wall of the filter unit (120). However, in another embodiment, the filtering medium (130) may be removably attached to a bottom wall of the filter unit (120). Further, the filtering medium (130) may be removably attached to a top or bottom of the bottom wall of the filter unit (120).
The container (110) includes a first fastening part (110a), and the filter unit (120) includes a second fastening part (120a) matingly engageable with the first fastening part (110a). In an exemplary embodiment, the fastening parts (110a, 120a) are screw threads, and the container (110) and the filter unit (120) can be fastened to one another by a screwing action. In other embodiments, the fastening parts (110a, 120a) can also be formed as other mechanical fasteners e.g. snap-fit fastener, press-fit fastener, hook and loop fastener and the like.
In the first embodiment, the first fastening part (110a) is formed on an inner side surface (110b) of the container (110), and the second fastening part (120a) is formed on an outer side surface (120b) of the filter unit (120). However, both the fastening parts (110a, 120a) may also be formed on outer side surfaces of the container (110) and the filter unit (120), as shown in
Further, the first fastening part (110a) and second fastening part (120a) may also be formed as a projection around a lip portion of the container (110), and two or more inverted projections around a lip portion of the filter unit (120), respectively, as shown in
Moving back to
The inner side surface (110b) of the container (110) and the outer side surface (120b) of the filter unit (120) are configured, such that the filter unit (120) is automatically aligned with respect to the container (110), as the filter unit (120) is being slid into the container (110). A cross section of the container (110) and the filter unit (120) can be circular, triangular, polygonal or any other shape that allows a proper alignment between the container (110) and the filter unit (120), when the filter unit (120) to be substantially slid into the container (110).
Further, the configuration of the inner side surface (110b) of the container (110) and the outer side surface (120b) of the filter unit (120) allows a portion of the outer side surface (120b) of the filter unit (120) to be frictionally, axially slid within the inner side surface (110b) of the container (110) to form an air-tight seal between the inner side surface (110b) of the container (110) and the outer side surface (120b) of the filter unit (120). For example, the inner side surface (110b) of the container (110) and/or the outer side surface (120b) of the filter unit (120) is formed with an O-ring to form a sealing contact between the inner side surface (110b) of the container (110) and/or the outer side surface (120b) of the filter unit (120).
Moreover, a negative pressure is formed between the filter unit (120) and the container (110), such that the solid substance (10a) sticking to an underside of the filtering medium (130) is forced to fall into the container (110), when the filter unit (120) is unfastened from the container (110). Thus, a process of cleaning the filtering medium (130) is simplified.
In the first embodiment, the inner side surface (110b) of the container (110) is contoured, such that an upper portion (110e, shown in
By this configuration, a bottom end of the filter unit (120) is substantially free to move in the upper portion (110e, shown in
It is to be understood that the figures are only for understanding purpose and are not drawn to the scale of the actual device. In a preferred embodiment, the upper portion (110e, shown in
Further, the filter unit (120) is formed in a shape similar to the container (110), except for an additional crown portion, wherein:
Further, the lower portion (110d, shown in
The complete filtering process carried out by the device (100) is as follows: The liquid (10) to be filtered is collected in the container (110), wherein the liquid (10) contains the solid substance (10a). The liquid (10) is permeable through the filtering medium (130), and the solid substance (10a) in the liquid (10) is non-permeable through the filtering medium (130).
The bottom end of the filter unit (120) is inserted into a top end of the container (110). As the outer diameter of the bottom end of filter unit (120) is at least equal to the inner diameter of the lower portion (110d, shown in
The filter unit (120) is further lowered in the container (110) by pushing the filter unit (120) or by the fastening action e.g. screwing action, so that the liquid (10) passes through the filtering medium (130), while the solid substance (10a) is pushed down towards the inner bottom surface (110c, shown in
As the pressure required for filtering or separating the components (10a, 10b) in the liquid (10) is exerted by means of the fastening action, the present invention eliminates a need for any powered actuator, and therefore reducing complexity and cost of manufacturing and operating the device (10). The present invention does reverse-filtration, wherein the solid (10a) is pushed to a bottom of the container (110a) and the liquid (10) is forced to pass through the filtering medium (130) in the vertically upward direction, as shown in
Even though, in the above embodiments, the filtering medium (130) is shown to be forming a bottom of the filter unit (120), it is also possible to provide the filtering medium at a side wall of the filter unit (120), as shown in
In this embodiment, a side wall of the bottom portion (120d) is embedded with the filtering medium (130), such that liquid (10) flows into the bottom portion in a direction perpendicular to the direction of gravity. Since a bottom surface of the bottom portion (120d) contacts the inner bottom surface (110c, shown in
The rod (230) is formed with a threading that mates with threading formed in the hole of the guiding part (220), and the rod (230) is movable between an upper position and a lower position. A top end of the rod (230) is fixed to a handle (231) and a bottom end of the rod (230) is fixed to the filtering medium (130), such that the filtering medium (130) is urged into the container (110), when the rod (230) is moved to the lower position, as shown in
An edge of the filtering medium (130) is configured, such that the filtering medium (130) frictionally, axially slides over the inner side surface (110b, shown in
In accordance with the exemplary embodiment, the method for filtering the liquid is explained using
While moving the filtering medium (130) a sealing contact is formed between a peripheral edge of the filtering medium (130) and the inner side surface (110b) of the container (110). Further, the filtering medium (130) is moved towards the inner bottom surface (110c) of the container (110) until further movement is stopped by the solid substance (10a) and is locked.
As the solid substance (10a) is pushed to a bottom of the container (110), the liquid (10) is forced to pass through the filtering medium (130) in the vertically upward direction. Thus, preventing clogging of the filtering medium (130), while separating and collecting the liquid (10) and the solid substance (10a) simultaneously and preventing re-mixing of the liquid (10) with the solid substance (10a).
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise.
The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or groups thereof.
The use of the expression “at least” or “at least one” suggests the use of one or more elements, as the use may be in one of the embodiments to achieve one or more of the desired objects or results.
While the foregoing describes various embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof. The scope of the invention is determined by the claims that follow. The invention is not limited to the described embodiments, versions or examples, which are included to enable a person having ordinary skill in the art to make and use the invention when combined with information and knowledge available to the person having ordinary skill in the art.
Number | Date | Country | Kind |
---|---|---|---|
PI2018703147 | Sep 2018 | MY | national |