The present invention relates in general to a device for fine processing of optically effective surfaces. In particular, the invention relates to a device for fine processing of the optically effective surfaces of spectacle lenses that are used on a large scale in so-called “RX workshops”, i.e. production facilities for manufacture of individual spectacle lenses according to prescription.
If in the following, by way of example, reference is made to “spectacle lenses” for workpieces with optically effective surfaces there is to be understood by that not only spectacle lenses of mineral glass, but also spectacle lenses of all other customary materials for example polycarbonate, CR 39, HI index and other plastic material.
Processing of optically effective surfaces of spectacle lenses by material removal can be roughly divided into two processing phases, namely initially preparatory processing of the optically effective surface for producing the macrogeometry in accordance with prescription and then fine processing of the optically effective surface in order to eliminate preparatory processing tracks and obtain the desired microgeometry. Whereas preparatory processing of the optically effective surfaces of spectacle lens is carried out in dependence on, inter alia, the material of the spectacle lenses by grinding, milling and/or turning, in fine processing the optically effective surfaces of spectacle lenses are usually subjected to a precision-grinding, lapping and/or polishing process, for which purpose use is made of an appropriate machine. To that extent, in the terminology of the present application the term “polishing”, including expressions such as, for example, “polishing tool” or the like, is to embrace precision-grinding and lapping processes, in the example thus precision-grinding or lapping tools.
Manually loaded polishing machines in RX workshops, in particular, are usually constructed as “twin machines” so that advantageously two spectacle lenses of an “RX job”—a spectacle lens prescription always relates to a pair of spectacle lenses—can be subjected to fine processing simultaneously. Such “twin” polishing machines are known from, for example, documents U.S. Pat. Nos. 8,696,410 and 9,289,877, which disclose a related machine kinematics.
According to, for example, the last-mentioned document (see, in particular,
Each tool spindle has a spindle shaft on which the respective tool mounting section is formed and which is mounted in a spindle housing to be driven to rotate about a tool axis of rotation A1, A2, which housing in turn is guided in a guide tube to be capable of defined axial displacement in the direction of the tool axis of rotation. Whereas the spindle housings of the two tool spindles are flange-mounted on the second tool carriage, the guide tubes are mounted on the pivot yoke so that as a result the tool axis of rotation A1 or A2 of each tool spindle forms with the workpiece axis of rotation C1 or C2 of the associated workpiece spindle a plane in which the respective tool axis of rotation A1 or A2 is axially displaceable (linear axis X, linear setting axis Z) and tiltable (pivot setting axis B) with respect to the workpiece axis of rotation C1 or C2 of the associated workpiece spindle.
By virtue of the given possibilities of movement, the prior art polishing machine allows—with a compact construction—pairwise processing of spectacle lenses not only by a so-called “tangential polishing kinematic” in which the polishing tools axially adjusted (Z) together with the tool spindles are moved under a preset, but fixed, pivot angle (B) of the tool spindles in oscillation with relatively small strokes transversely (X) over the spectacle lenses, but also with a polishing kinematic in which the adjusted (Z) polishing tools during the oscillating transverse movement (X) thereof at the same time continuously pivot (B) so as to follow the surface curvature of the spectacle lenses, wherein the spectacle lenses and the polishing tools can be driven (but do not have to be at least as far as the polishing tools are concerned) in the same sense or opposite sense at the same or different rotational speeds about the axes of rotation (A1, A2, C1, C2) thereof.
To that extent, it is certainly advantageous that this polishing machine can be widely used. However, in the case of specific materials which are difficult to polish such as, for example, polycarbonate materials or high-index material it is still desirable to process with different polishing bases in order to reduce polishing times and/or achieve specific surface qualities, which in the afore-described prior art would require a change of polishing tools. The same applies if spectacle lenses to be polished in succession significantly differ in the geometry thereof (surface curvature, diameter). Tool change times thus required can indeed be significantly reduced for industrial production by use of automated tool changers with tool magazines, but this would be involve a substantial outlay on equipment.
What is desired is a device, which is constructed as simply and compactly as possible, for fine processing of optically effective surfaces of, in particular, spectacle lenses, the device being usable as widely as possible and thus allowing different processing strategies without requiring longer processing times.
According to one aspect of the invention a device for fine processing of optically effective surfaces of, in particular, spectacle lenses as workpieces comprises a workpiece spindle, which projects into a work space and by way of which a workpiece to be polished is drivable for rotation about a workpiece rotational axis C, and two tool spindles which are associated with the workpiece spindle and project oppositely into the work space and on each of which a respective polishing tool is mounted to be drivable for rotation about a tool rotational axis A, A′ and to be axially adjustable (Z) along the tool rotational axis A, A′, the tool spindles being movable relative to the workpiece spindle in common along a linear axis X extending substantially perpendicularly to the workpiece rotational axis C and being pivotable about different pivot setting axes B, B′ extending substantially perpendicularly to the workpiece rotational axis C and substantially perpendicularly to the linear axis X, wherein the tool spindles are arranged in succession as seen in the direction of the linear axis X.
Due to the fact that at the outset the tool spindles are arranged in succession as seen in the direction of the linear axis X the device according to the invention is of advantageously compact construction, which makes it apposite for use as a polishing cell in a polishing machine with a plurality of devices according to the invention. In that case, it is conducive to simple construction of the device as well as with respect to energy efficiency that the two tool spindles are not only movable in common along the linear axis X, but also pivotable in common about the different pivot setting axes B, B′, since only one drive is thus needed for each of these linear or pivot movements.
Even a polishing machine in which only one device according to the invention is used (basic version) makes possible different processing methods and thus is very flexible: It is observed at the outset that due to the relevant combination of axes (A, B, C, X, Z), all polishing processes described above with respect to the prior art can be carried out on a workpiece by the device according to the invention, in specific circumstances even without an individual rotary drive for the tool.
If different polishing tools are used at the two tool spindles of one device it is possible to carry out, for example, preparatory polishing and fine polishing with different polishing coatings in one tool chucking, which makes very short polishing times possible with, at the same time, increased surface quality.
It is also possible, by comparison with the prior art outlined in the introduction, to increase the working range of the device by use of polishing tools of different size (tool diameter) and/or different curvature (tool radius of curvature) at the two tool spindles of one device. Thus, for example, very small or very large workpieces with, in a given case, strongly curved surfaces can be processed by the device without a tool change having to be undertaken for that purpose, which consequently is helpful towards achieving shorter overall processing times.
In the case of use of the device in the production of spectacle lenses to prescription it is additionally possible to polish not only concavely curved, but also convexly curved spectacle lenses with the same polishing tool or, however, with polishing tools shaped in correspondence with the respective spectacle lens curvature (cc or cx). Such a combined operation in polishing-processing is particularly advantageous with regard to the currently increasing presence of spectacle lenses with aspherical or progressive surfaces on both sides.
Moreover, it is possible to use an identical polishing tool at both tool spindles of one device so that in the event of wear of one tool, for example after a predetermined number of polished workpieces, an automatic spindle change and thus tool change can be carried out.
A further processing variant with one device and identical polishing tools would be utilization of the tool spindles in alternation during processing of a workpiece or from workpiece to workpiece. This would have the advantage that the respective polishing tool out of use and the corresponding tool spindle together with drive could cool down in the pause, with the result of uniform wear, a controlled machine heating cycle and/or increased tool service lives.
If in a polishing machine for simultaneous polishing of at least two spectacle lenses there is use, in correspondence with the number of spectacle lenses to be polished simultaneously, of at least two devices according to one aspect of the invention as polishing cells, which advantageously can be realized by a modular arrangement in a common machine frame, the possible processing strategies are even more numerous. At the outset, by contrast to a polishing machine according to the prior art outlined in the introduction, in which the two tool spindles are always moved in common linearly (X) or pivotably (B) relative to the two workpiece spindles associated therewith, in the case of processing only one spectacle lens—which can be necessary, for example, for refinishing—the other tool spindle does not have to be conjunctively moved non-operationally and disadvantageously in terms of energy consumption.
Moreover, a polishing process, which is optimal for the respective spectacle lens prescription and has individually selectable oscillation strokes, oscillation frequencies, angles of incidence, rotational speeds, polishing times and polishing pressures can be performed in each device or polishing cell of the polishing machine. By contrast to the above prior art, it is not necessary to accept a compromise which in the case of the prior art polishing machines may ultimately lead to longer processing times than necessary and to worse surface qualities than possible.
If, for example, three devices according to the invention are used as polishing cells in a polishing machine a pair of spectacle lenses can be simultaneously processed with individual process parameters per spectacle lens in two polishing cells, while in the third polishing cell—with suitable tool fit—it is possible to carry out at the same time “special work” such as the processing of specific geometries (for example large diameters and/or strong curvatures), refinishing work or prescriptions with only one prescription lens (if the second spectacle lens is a standard lens).
In the developed version of a polishing machine described above the individual devices according to the invention can be arranged in the machine frame in, for example, star shape around a central operator position, which can have advantages for machine loading. However, it is currently preferred if the devices are arranged adjacent to one another in such a polishing machine so that the respective linear axes X, X′, X″ extend substantially parallel to one another, which not only represents a space-saving arrangement, but also facilitates automation, particularly of the workpiece change.
In an automated version developed even further the polishing machine can thus comprise a transfer station optionally with a conveyor belt, for the deposit of prescription boxes for reception of spectacle lenses which are to be polished and are polished, a washing station for washing the polished spectacle lens and—for further increase in productivity—a portal handling system, which automatically transports the spectacle lenses between the stations and the devices and positions the spectacle lenses in the respective station or device. If a conveyor belt is not used, the transfer station could also be designed so that several prescription boxes could be deposited in a position reachable by the portable handling system or so that the portal handling system can displace the receptacle box into/onto the transfer station. In principle, a robot handling system or a hexapod system, which could be displaceably arranged on a rail in front of the polishing cells or at a carriage to hang at the front above the polishing cells, would also be conceivable for workpiece handling, such solution however would be much more expensive.
In that regard, in an advantageous embodiment the portal handling system can comprise a suction unit, which is movable in space, for holding a spectacle lens, which is to be polished, at the optically effective surface to be polished as well as a multi-finger gripper, which is movable in space, for holding a polished spectacle lens at the edge thereof. The advantage of use of a multi-finger gripper is that this does not contact the polished surface, but grips only the edge of the spectacle lens, so that the risk of imprinting or scratching the polished surface during workpiece handling is precluded. On the other hand, the suction unit can be used without problems on blanks as a reliable and robust solution.
In principle, it would be possible with the device according to one aspect of the invention, as such, for the pivot setting axes B, B′ of a device to lie at different heights with respect to the linear axis X, which, assuming an invariable height of the workpiece spindle, would allow or require different axial strokes and/or pivot angles of the polishing tools from tool spindle to tool spindle. In addition, with respect to the possibility of use of identical components it is, however, preferred if the pivot setting axes B, B′ lie in a notional plane extending along the linear axis X or parallel thereto. Each tool spindle thus has the same kinematic boundary conditions; tool strokes and thus stiffnesses are identical, as a result of which there is to that extent freedom of selection for the positioning of the polishing tools at the front and rear tool spindles.
In a simpler and more compact design of the tool-oscillation and tool-pivotation possibilities of movement with shortest practicable travel paths the arrangement is preferably such that one tool spindle is mounted on a front pivot yoke which is pivotably connected with a tool carriage to be pivotable in defined manner about one pivot setting axis B, whereas the other tool spindle is mounted on a rear pivot yoke which is pivotably connected with the same tool carriage to be pivotable in defined manner about the other pivot setting axis B′, the tool carriage in turn being drivable along the linear axis under guidance with respect to a frame surrounding the work space.
In that case, for movement and positioning of the tool carriage guided at two guide rods connected with the frame there is preferably provided a rotary drive which is stationary with respect to the frame and which is drivingly connected with a ball screw drive comprising a rotatably mounted ball screw spindle engaging a nut connected with the tool carriage to be secure against relative rotation. In principle, the use of other linear guides and drives would, in fact, also be conceivable, for example linear motors or the like, but on the other hand the above preferred embodiment of guide and drive is more economic for a high level of stiffness and insensitivity relative to dirt.
Fundamentally, it would be possible to provide an individual drive for the pivot movement of each pivot yoke, for example a respectively associated torque motor. However, for preference for defined pivotation of the two tool spindles about the pivot setting axes B, B′ a linear drive is provided which is pivotably connected by one end thereof with one pivot yoke at a spacing from the corresponding pivot setting axis B and by the other end thereof with the tool carriage, wherein that pivot yoke is in addition disposed in drive connection with the other pivot yoke by way of a coupling rod, which at a spacing from the pivot setting axes B, B′ is pivotably connected by one end thereof with said one pivot yoke and by the other end thereof with said other pivot yoke. In a preferred embodiment the device thus advantageously has only a single drive for pivotation of the two tool spindles.
Sofar as the axial adjusting movement of the polishing tools is concerned it is preferred if each tool spindle comprises, for axial adjustment of the respective polishing tool along the associated tool axis of rotation A, A′, a piston-cylinder arrangement with a piston which is received in a cylinder housing and which is connected with a spindle shaft in coaxial arrangement to be effective in terms of actuation, the spindle shaft being mounted together with the piston-cylinder arrangement in a spindle housing to be rotatable about the respective tool axis of rotation A, A′. This construction is distinguished particularly by low weight, in which case, in particular, axial movements can be executed in highly dynamic manner, which in turn makes possible short processing times with very high polishing quality, since the polishing tool can always follow the workpiece even when there are relatively substantial departures from rotational symmetry at the workpiece.
In that regard, the cylinder housing of the pneumatically actuable piston/cylinder arrangement is preferably of two-part construction and lined with a guide sleeve of mineral glass, in which the piston, which is made from a graphite material at its guide surface, is received to be longitudinally displaceable. A significant advantage of such a “glass cylinder” results from its very low stick/slip tendency; thus, the device can operate sensitively even with very low polishing pressures.
According to an advantageous development the piston of the piston-cylinder arrangement can additionally be connected in tension-resistant and compression-resistant manner with the spindle shaft by way of a thin rod of a spring steel. Such a very light and play-free force transmission element provides, in simple manner, a possibility of radial compensation, as a result of which jamming cannot occur if the center axes of the piston or the piston-cylinder arrangement and the spindle shaft are not correctly aligned.
If a rotary drive at the polishing tool is desired, the cylinder housing can be provided at the outer circumference with a toothing for engagement of a cogged belt drivable by way of a motor, which is flange-mounted on the respective pivot yoke, with a belt pulley so as to rotate the piston-cylinder arrangement and thus the spindle shaft about the respective tool axis of rotation A, A′. Such a rotary drive resulting from standard drive elements is not only favorable in cost, but has—by comparison with an equally conceivable rotary drive arranged coaxially with the spindle shaft as shown and described in the prior art defining the category—the advantage of smaller moved masses, which in turn is conducive to high quality of the polished surface with short processing times. Use of a gearwheel transmission is also conceivable as a further, particularly low-wear, alternative for transmission of torque to the spindle shaft from a rotary drive arranged parallel to the spindle shaft. In that case, a gearwheel of steel can be provided at the drive side, the gearwheel meshing with gearwheel of the same size at the spindle side and of plastics material (translation ratio 1:1), in which case the two gearwheels can be provided with a bevel toothing so that as a result the gearwheel pair also runs with very low noise output.
Corresponding advantages in terms of mass are applicable to a preferred construction in which for torque transmission from the cylinder housing of the piston-cylinder arrangement to the spindle shaft a splined shaft guide—thus again inexpensive standard elements—is provided, with guide grooves formed in the spindle shaft and a flanged nut engaging therewith by way of an axial bearing element and connected with the cylinder housing to be secure against relative rotation.
In further pursuit of one aspect of the invention the polishing tool can comprise a tool mounting head, which is securable to the respective spindle shaft to be capable of axial and rotational entrainment and on which a polishing disc is exchangeably mounted, for which purpose a base body of the polishing disc and the tool mounting head are provided with complementary structures for axial detenting and for rotational entrainment of the polishing disc by the tool mounting head. This produces, on the one hand, an uncomplicated capability of exchange of the polishing plate as well as secure mounting of the polishing disc on the respective tool spindle and, on the other hand, a defined mechanically positive transmission of torque between the tool mounting head and polishing disc during the polishing process.
In one embodiment the tool mounting head can comprise a ball joint with a ball head, which is received in a ball socket and which is formed at a ball pin securable to the spindle shaft of the respective tool spindle, whereas the ball socket is formed in a mounting plate with which the polishing disc is detentable. This makes possible, in simple manner, tilting of the polishing disc relative to the spindle shaft of the respective tool spindle during the polishing process so that the polishing disc can readily follow the most diverse spectacle lens geometries, even, for example, cylindrical surfaces or progressive surfaces with high additions. Moreover, the tiltability of the polishing disc advantageously permits execution of polishing processes with the already discussed “tangential polishing kinematic”, in which case the polishing disc is capable of orientation in terms of angle at the spectacle lens.
In a preferred embodiment the ball head can have a receiving bore for a transverse pin which extends through the ball head and on either side of the ball head engages in associated recesses in the ball socket so as to connect the mounting plate with the ball pin to be capable of rotational entrainment. Such a configuration of the ball head as a universal joint makes it possible, in simple manner, to rotationally drive the polishing plate, which by comparison with an equally conceivable, purely frictionally produced rotational entrainment of the polishing disc by the spectacle lens enables significantly shorter polishing times. Fundamentally, with respect to tiltability and to a rotational drive possibility something similar could, in fact, also be realized by use of a homokinetic joint, but this would involve a significantly greater amount of complication and higher costs.
In addition, it is preferred if the mounting plate is resiliently supported by way of a resilient annular element on a support flange at the ball pin side in such a way that the polishing disc detented with the mounting plate seeks to self-align by its center axis with the ball pin and thus the spindle shaft of the respective tool spindle. The polishing disc is thereby prevented from excessive tilt movements, which on the one hand has a favorable effect particularly during movement reversal in the case of the mentioned oscillation of the polishing disc over the spectacle lens, since the polishing disc cannot bend away and as a consequence jam at the spectacle lens. On the other hand, such a resilient support of the mounting plate of the polishing tool is of advantage during mounting or positioning of the polishing disc, because the mounting plate adopts a defined position with slight constraint. The movement together of polishing disc and spectacle lens can, in addition, take place in such a manner as a consequence of the resilient (pre-)orientation of the mounting plate that the polishing disc is placed, substantially axially oriented, on the spectacle lens and not, for example, tipped, which could lead to problems particularly in the case of thick or elevated polishing discs. In principle, it would in fact also be possible to manage such (pre-)orientation of the polishing disc by means of a pneumatically influenced rubber bellows at the mounting plate, but this would be far more complicated.
In a further preferred embodiment of the device the tool mounting head in an axially retracted setting of the spindle shaft is detentable by a detent device with a cylinder housing or a part connected therewith to be secure against relative rotation. Thus, with advantage, in the retracted setting of the spindle shaft it is not necessary to expend any energy—such as, for example, in the application of a sub-atmospheric pressure to the afore-described piston-cylinder arrangement of the tool spindle—in order to hold the tool mounting head in the retracted setting for, for example, change of the polishing tool. In fact, other measures would also be conceivable for that purpose such as, for example, retention by permanent or electrically generated magnetic force, but this would be more complicated and possibly problematic with respect to simple attainment of low breakaway moments.
In an embodiment which is advantageous because it is less expensive and is simpler, the detent device can comprise a plurality of spring projections which are distributed over the circumference of the tool mounting head and project along the respective tool axis of rotation A, A′ and which mechanically positively engage with lugs in an annular groove, which is formed at the cylinder housing or the part connected therewith to be secure against relative rotation. Components of that kind can be produced without problems from plastics material, optionally even by injection molding for larger batch numbers.
Finally, it is particularly preferred if a lower region of the work space into which the workpiece spindle projects is bounded by a trough, which is integrally deep-drawn from a plastics material, with step-free wall surfaces. Advantages of such a trough, which in a given case is also coated to be hydrophobic, are—apart from corrosion resistance—that by comparison with an equally conceivable welded stainless steel trough the polishing medium readily drains and the work space is easy to clean and to keep satisfactorily sealed.
The invention is explained in more detail in the following by way of a preferred embodiment with reference to the accompanying, partly simplified or schematic drawings, which are not to scale and in which:
A polishing machine as preferred case of use or use location of a device 10 for fine processing of optically effective surfaces cc, cx at workpieces such as, for example, spectacle lenses L (cf.
Before the individual device 10 is described in detail, further details of its installation situation in the polishing machine 11 shall firstly be explained on the basis of
Thus, in the embodiment illustrated in
In addition, the automated variant, which is shown here, of the polishing machine 11 has a portal handling system 24 which automatically transports the spectacle lenses L between the stations 20, 21 and the devices 10, 10′, 10″ and positions the spectacle lenses L in the respective station 20, 21 or device 10, 10′, 10″. For that purpose, the portal handling system 24 comprises a suction unit 25, which is movable in three dimensions, for holding a spectacle lens 11, which is to be polished, at the optically effective surface cc to be polished and a multi-finger gripper 26, which is also movable in three dimensions, for holding a polished spectacle lens L at the edge thereof. The mentioned possibilities of three-dimensional movement are illustrated in
More specifically, the portal handling system 24 comprises two x linear units 28, 28′ for producing the x movement, these units being arranged above the polishing machine 11 on either side of the machine frame 12. The x carriages 29, 29′ thereof each carry a respective pivot mount 30, 30′ which with the assistance of a pneumatic cylinder 31 enables tilting of a y linear unit 32, which is mounted on the pivot mounts 30, 30′ and forms the portal, for producing the y movement through approximately 20°. Through this measure, a z linear unit 34 mounted on a y carriage 33 of the y linear unit 32 can be tilted out of the vertical in order to be adapted to a workpiece spindle inclined setting, which cannot be seen in the drawings and which arises when the devices 10, 10′, 10″ are in the state of being mounted in the machine frame 12. The suction unit 25 and the multi-finger gripper 26 are mounted on the z linear unit 34 to be longitudinally displaceable and, in particular, in such a manner that they can be moved in opposite sense by a common drive, i.e. if the suction unit 25 is moved downwardly the multi-finger gripper 26 at the same time moves upwardly and vice versa.
To that extent it will be evident to the expert that a spectacle lens L to be polished can be lifted (z) by the suction unit 25 of the portal handling system 24 out of a prescription box 23 on the transfer station by a movement of the z linear unit 34 and then can be moved in three dimensions (b, x, y) and inserted (z) at the inclined workpiece spindle 14 of the desired device 10, 10′, 10″ for processing by polishing. After the processing by polishing, the spectacle lens L polished to finished state can be lifted (z) by means of the multi-finger gripper 26 out of the respective device 10, 10′, 10″, transported (b, x, y) to the washing station 20 and inserted (z) into this for removal of polishing medium residues by washing. The clean spectacle lens L can subsequently be lifted (z) by the multi-finger gripper 26 out of the washing station 20, moved (x, y) to the respective prescription box 23 on the transfer station 21 and deposited (z) therein. The spectacle lenses L can accordingly be transported in that way or in analogous manner by the portal handling system 24 as desired or necessary back and forth between the devices 10, 10′, 10″ and stations 20, 21.
For further description of the device 10 reference may now be made to
As can be seen in
A tool carriage 50 which is guided with respect to the frame 36 to be drivable along the linear axis X is provided above the workpiece spindle 14 for movement in common of the workpiece spindles 16, 16′. More precisely, provided for movement and positioning of the tool carriage 50, which is guided at two parallel guide rods 51, 52 connected with the frame 36 on opposite sides, is a rotary drive 53 which is mounted on the frame 36 in fixed location and which is drivingly connected with a ball screw drive 54. The latter has an axially fixed ball screw spindle 55, which is rotatably mounted at both ends and which is in engagement with a nut 56 connected with the tool carriage 50 to be secure against relative rotation. In that case, the tool carriage 50 according to
As can be best seen in
A further linear drive 65 is provided for drive of the pivot yokes 61, 62, i.e. for defined pivotation in common of the two tool spindles 16, 16′ about the pivot setting axes B, B′ and is pivotably connected by one end thereof with the front pivot yoke 61 at a spacing from the corresponding pivot setting axis B and by the other end thereof with the tool carriage 50. More specifically, in the illustrated embodiment the linear drive 65 is a proprietary so-called “electrocylinder” with an actuating rod 66 which can be moved in and out by way of a rotary drive 67 and a transmission 68 in the case of corresponding energization of the rotary drive 67. If the rotary drive 67 is not energized, self-locking is present in the transmission 68, i.e. the actuating rod 66 remains in its respective initial setting in the case of non-excessive external forces; an integrated measuring system can feed back the respective position. This linear drive 65 is pivotably mounted at its end at the drive side on a mounting fork 69 mounted on the tool carriage 50, whereas at the other end of the linear drive 65 the actuating rod 66 pivotably engages a forked pivot arm 70 secured to the front pivot yoke 61 (see the screws in this region in
In that respect it is apparent that in the case of the chain of pivotation formed as described above a defined axial movement out or movement in of the actuating rod 66 has the consequence that the pivot yokes 61, 62 are pivoted in defined manner about the pivot setting axes B, B′, whereby the tool spindles 16, 16′, which are arranged centrally in the respective pivot yoke 61 or 62, are pivoted while remaining in parallel orientation relative to one another.
Further details with respect to the tool spindles 16, 16′ can be inferred from
The tool spindle 16 comprises a spindle housing 74, by way of which the tool spindle 16 according to
Each tool spindle 16, 16′ has a piston-cylinder arrangement 78, 78′ (also indicated in
According to
The housing lower part 84 of the cylinder housing 79 is rotatably supported by way of the floating bearing 76 in radial direction on the spindle housing 74 at the top in the figures. At the bottom in the figures, a labyrinth member 89 is flange-mounted on the housing lower part 84 by means of a screw connection 90 which in that case together with the housing lower part 84 axially clamps the inner ring of the fixed bearing 75 in place. The labyrinth member 89 forms, as the name itself indicates, together with the underside of the spindle housing 74 at 91 a sealing labyrinth with narrow gap dimensions and additionally has radially within the sealing labyrinth 91 an annular recess 92 for reception of a sealing ring 93, the sealing lip of which similarly sealably co-operates with the lower side of the spindle housing 74.
As
In addition, provided for torque transmission from the thus-rotating drivable cylinder housing 79 of the piston-cylinder arrangement 78 to the spindle shaft 81 is a splined shaft guide 99 with guide grooves 100, which are formed in the spindle shaft 81, and a flange nut 102, which is in engagement therewith by way of an axial bearing element 101—since it is known per se, it is indicated in
To that extent it is evident that the spindle shafts 81, 81′ of the tool spindles 16, 16′ are drivable—controllably in rotational speed and rotational direction—at a given time independently of one another for rotation about the tool axes of rotation A, A′ and/or adjustable independently of one another along the tool axes of rotation A, A′, in a given case also with very fine sensitivity (adjusting axes Z, Z′).
Details with respect to the polishing tool 18, which is currently preferred for use in this device 10, can similarly be inferred from
A polishing disc 106 is exchangeably mounted on the tool mounting head 104, for which purpose a base body 107 of the polishing disc 106 and the tool mounting head 104, more precisely the mounting plate 105 thereof, are provided with complementary structures 108 for axial detenting and rotational entrainment of the polishing disc 106 by the tool mounting head 104. This interface, which is formed by the complementary structures 108, between polishing disc 106 and tool mounting head 104 is the subject of document U.S. Pat. No. 9,089,948, to which, for avoidance of repetitions, express incorporation by reference is hereby made at this point with regard to construction and function of the interface.
On the side of the mounting plate 105 remote from the polishing disc 106 the tool mounting head 104 has a ball joint 109 with a ball head 111 which is received in a ball socket 110 and which is constructed at a ball pin 112 securable to the spindle shaft 81 of the tool spindle 16, more precisely able to be screwed in at the end thereof. On the other hand, the ball socket 110 is formed in the mounting plate 105 with which the polishing disc 106 is detentable. In the illustrated embodiment the ball head 111 has a receiving bore 113 for a transverse pin 114, which extends through the ball head 111 by radiused ends and engages on either side of the bore head 111 in associated recesses 115 in the ball socket 110 so as to connect the mounting plate 105 in the manner of a universal joint with the ball head 111 and thus with the spindle shaft 81 of the tool spindle 16 to be capable of rotational entrainment.
In addition, a circularly annular support flange 116 is introduced between the ball pin 112 and the free end of the spindle shaft 81. The ball pin 112 secures the support flange 116 to the spindle shaft 81. A resilient annular element 117 made from, for example, a suitable foam material rests on the support flange 116, by way of which annular element the mounting plate 105 of the tool mounting head 104 can be resiliently supported on the support flange 116 at the ball pin side in such a manner that the polishing disc 106 detented with the mounting plate 104 seeks to self-align by its center axis with the ball pin 112 and thus the spindle shaft 81 of the tool spindle 16.
In addition, it can be seen in
An intermediate layer 122, which is softer by comparison with the base body 107 and on which a polishing medium carrier 123 rests, of a resilient material is secured to the base body 107 of the polishing disc 106 illustrated here. The polishing medium carrier 123 forms the actual outer processing surface 124 of the polishing disc 106. In this structure of the polishing disc 106 the intermediate layer 122 has at least two regions of different hardness which are arranged one behind the other in the direction of the center axis of the polishing disc 106, wherein the region of the intermediate layer 122 adjoining the base body 107 is softer than the region of the intermediate layer 122 on which the polishing medium carrier 123 rests. More precisely, the two regions of the intermediate layer 122 are here formed by mutually different foam material layers 125, 126 of respectively constant thickness as seen along the center axis of the polishing disc 106 namely a softer foam material layer 125 on the base body 107, more precisely the spherical end surface 127 thereof, and a harder foam material layer 126 under the polishing medium carrier 123. The individual components (107, 125, 126, 123) of the polishing disc 106 are glued together. This polishing disc 106, which is universally usable for a wide range of workpiece curvatures, in particular the actual construction and dimensioning thereof, is the subject of parallel, i.e. filed on the same application date, U.S. Ser. No. 15/519,662 (See also German Patent Application DE 10 2014 015 052.6 which is hereby incorporated by reference for avoidance of repetitions.
Other polishing tools or polishing discs can obviously also be used with the device 10 in correspondence with the respective polishing requirements. Thus, for example, it would be possible to use tools according to the document U.S. Pat. No. 7,559,829 B2 which is hereby incorporated by reference without an individual rotary drive. In this case, mounting bore and transverse pin would be just as redundant in the ball head of a somewhat longer ball pin as the support flange and the resilient annular element of the polishing tool illustrated here. Instead, a flange, which is similar, but somewhat larger in diameter, with an outer radial groove for receiving a bellows would be used. Since the device 10 has the two spindles 16, 16′ arranged one behind the other, a “mixed drive” would also be possible, with an active rotationally driven polishing tool 18, as shown in the figures, at one tool spindle 16 and a merely “passive” rotationally entrained polishing tool according to, for example, document U.S. Pat. No. 7,559,829 B2 at the other tool spindle 16′.
The different polishing processes able to be performed by the afore-described kinematics of the device 10—in which moreover a liquid polishing medium is supplied to the point of action between tool and workpiece by way of polishing medium nozzles 128 provided at the workpiece spindle 14 (see
A device for fine processing of optically effective surfaces of, in particular, spectacle lenses as workpieces comprises a workpiece spindle, which projects into a work space and by way of which a workpiece to be polished is rotationally drivable about a workpiece axis of rotation (C), and two tool spindles associated with the workpiece spindle and projecting oppositely into the work space. A respective polishing tool is mounted on each of the tool spindles to be drivable for rotation about a tool axis of rotation (A, A′) and axially adjustable (adjusting axis Z, Z′) along the tool axis of rotation. In addition, the tool spindles are movable in common relative to the workpiece spindle along a linear axis (X) extending substantially perpendicularly to the workpiece axis of rotation and pivotable about different pivot setting axes (B, B′) extending substantially perpendicularly to the workpiece axis of rotation and substantially perpendicularly to the linear axis. In that case, the tool spindles are arranged one behind the other as seen in the direction of the linear axis. As a consequence of such an arrangement the device is of very compact construction and is widely usable for different polishing processes and polishing strategies.
Variations and modifications are possible without departing from the scope and spirit of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 015 053 | Oct 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/001857 | 9/17/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/058663 | 4/21/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2994164 | Dalton | Aug 1961 | A |
3302337 | Milner, Jr. | Feb 1967 | A |
5906534 | Folkman et al. | May 1999 | A |
6155911 | Mandler | Dec 2000 | A |
6244943 | Bohler | Jun 2001 | B1 |
7422510 | Schneider | Sep 2008 | B2 |
7455569 | Schäfer et al. | Nov 2008 | B2 |
7559829 | Stephane et al. | Jul 2009 | B2 |
8696410 | Schäfer et al. | Apr 2014 | B2 |
9089948 | Schäfer et al. | Jul 2015 | B2 |
9289877 | Schäfer et al. | Mar 2016 | B2 |
20070155287 | Drain | Jul 2007 | A1 |
20070293128 | Schafer | Dec 2007 | A1 |
20120135672 | Schafer | May 2012 | A1 |
20120211942 | Smith | Aug 2012 | A1 |
20130232774 | Nakako | Sep 2013 | A1 |
20130344778 | Schafer | Dec 2013 | A1 |
20140183025 | Kamen | Jul 2014 | A1 |
20150038061 | Wallendorf | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
201552483 | Aug 2010 | CN |
201889693 | Jul 2011 | CN |
29803158 | Aug 1998 | DE |
19832724 | Mar 1999 | DE |
10106659 | Aug 2002 | DE |
202011107121 | Dec 2011 | DE |
1955811 | Aug 2008 | EP |
Entry |
---|
Chinese Office Action; Applicant: Satisloh, AG; Application No. 2018073101275250; dated Aug. 3, 2018; 12 Pages. |
European Search Report; No. PCT/EP2015/001857 dated Feb. 8, 2016; 13 pages. |
German Office Action; Applicant: Satisloh AG; Appln. No. 10 2014 015 053.4; dated Sep. 24, 2015. |
Number | Date | Country | |
---|---|---|---|
20170246720 A1 | Aug 2017 | US |