Device for fixing an aircraft propulsion system to a strut and a strut adapted to said device

Information

  • Patent Grant
  • 6398161
  • Patent Number
    6,398,161
  • Date Filed
    Thursday, April 20, 2000
    24 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
An aircraft propulsion system (10) is connected to a strut, fixed to the wing or fuselage, by a fixing device comprising at least one rear mount (22) and two front mounts (24, 26). The rear mount (22) and a first (24) of the front mounts connect a main part (12a) of the frame (12) of the strut to the central casing (16) of the engine. The other front mount (26) connects a front part (12b) projecting from the strut frame (12) to the fan stator case (20) and mainly takes up the vertical forces (Z). Thus, the first front mount (24) can be simplified and bending or sagging of the engine is reduced.
Description




TECHNICAL FIELD




The invention relates to a fixing device by means of which an aircraft propulsion system comprising an engine and a pod is connected to a strut fixed to a structural element of the aircraft such as a fuselage or wing element.




The invention also relates to an attachment strut able to support an aircraft propulsion system through such a fixing device.




The fixing device and the strut according to the invention can be used on any type of aircraft. A preferred application relates to aircraft of modern design, whose engines are equipped with very large diameter fans.




PRIOR ART




On an aircraft, the strut constitutes the connecting interface between the propulsion system, including the engine and the pod, and the aircraft fuselage or wing. It permits the transmission to the aircraft structure of forces generated by the engine (structural function). It also ensures the passage of fuel, electricity (control and power), hydraulics and air between the propulsion system and the aircraft (system function). Apart from these two functions, the strut must respect different constraints such as the obtaining of maximum safety, with an aerodynamic drag, a weight and a cost which must be as low as possible.




To ensure the transmission of forces, the strut comprises a primary structure, having a frame, e.g. in box form. In this case, said frame comprises ribs and panels, as well as mounts through which the strut is connected on the one hand to the structure of the aircraft and on the other to the propulsion system.




The strut also comprises a secondary structure ensuring the segregation and retention of the systems, whilst supporting aerodynamic shrouds.




In order to be able to ensure the transmission of forces between the propulsion system and the aircraft structure, the mounts interposed between the strut and the propulsion system are at least partly anchored to the central casing. Therefore the strut penetrates the secondary flow duct formed between said central casing and the pod which surrounds it. To disturb to the very minimum the air flow in said secondary duct, the front part of the strut must be as narrow as possible.




As is very diagrammatically illustrated in

FIGS. 1A and 1B

of the attached drawings, there are at present two main types of devices for fixing a propulsion system


1


to a not shown strut fixed to a structural element of an aircraft.




A first type of known fixing device, illustrated in

FIG. 1A

, is generally known as a “core fixture”. This fixture is characterized by the use of a front mount


3


and a rear mount


4


, directly linking the strut to the central casing


5


. The front mount


3


links the strut to a front part of the central casing


5


, located just to the rear of the fan stator case


6


. Said front part of the central casing


5


mainly constitutes the casing of the high pressure compressor of the engine. The rear mount


4


is interposed between the strut and the rear of the central casing


5


.




To facilitate understanding, an orthonormal fix OXYZ is allocated to the propulsion system


1


and in it the longitudinal axis OX coincides with the longitudinal axis of the propulsion system


1


and is oriented towards the front. The lateral axis OY is perpendicular to the OX axis and to the median plane of the strut (said latter plane being vertical or perpendicular to the lower surface of the wing when the engine is suspended on said wing in the manner shown). Finally, the OZ axis is perpendicular to the OX and OY axes, i.e. vertical in the embodiment shown. The OZ axis is oriented from the engine to the strut, i.e. upwards. In the case of an engine attached laterally to the fuselage of an aircraft, the OY axis would be oriented downwards and the OZ axis in a substantially horizontal plane. However, the OY and OZ axes will be respectively called the “lateral axis” and “vertical axis” throughout the text.




In a fixture of the “core” type, as illustrated in

FIG. 1A

, the front mount


3


ensures the transmission of forces exerted between the central casing


5


of the engine and the strut in longitudinal X, lateral Y and vertical Z directions (in the case represented of a propulsion system beneath the wing) relative to the propulsion system


1


.




For its part, the rear mount


4


ensures the transmission of forces exerted between the central casing


5


of the engine and the strut in lateral Y and vertical Z directions, as well as the transmission of the moment M


X


in accordance with the longitudinal axis OX.




In the second type of conventional fixture illustrated in FIG.


1


B and generally known as the “hybrid fan fixture”, the link between the propulsion system


1


and the strut is also ensured by a front mount


3


′ and a rear mount


4


(cf. also EP-A-741 074 and EP-A-805 108).




The front mount


3


′ is interposed between the strut and the fan stator case


6


of the propulsion system


1


. It ensures the transmission of forces in the lateral direction Y and vertical direction Z with respect to the propulsion system


1


.




As in the core-type fixture, the rear mount


4


is interposed between the strut and the rear part of the central casing


5


. This rear mount


4


ensures the transmission of forces exerted between the central casing


5


of the engine and the strut in the lateral direction Y and vertical direction Z with respect to the propulsion system


1


, as well as the transmission of moments M


X


in the longitudinal axis OX. Moreover, two rods


7


linking the rear mount


4


to the front part of the central casing


5


enable the rear mount


4


to also transmit forces exerted between the central casing


5


of the engine and the strut in the longitudinal direction X.




To make aircraft engines more economic, aircraft manufacturers attempt to increase their bypass ratio. This leads to increasing the diameter of the fan, which is generally located at the front of the propulsion system. However, this engine size increase leads to numerous problems associated with existing fixture devices.




Thus, when using a core-type fixing device, as illustrated in

FIG. 1A

, the diameter difference between the fan stator case and the central casing of the engine increases engine bending phenomena, which are particularly sensitive with this fixture type. Particularly under certain flight conditions and in particular on take-off, the aerodynamic support on the air intake, transmitted on the front of the engine fan, gives rise to a significant engine bending between its two mounts


3


and


4


. To prevent the rubbing of the rotary fan blades on the fan stator case


6


and the rubbing of the rotary compressor and turbine blades on the central casing of the engine, it is consequently necessary to provide a clearance between the end of the different blades and the corresponding casings. These clearances increase in size with the rise in the bypass ratio of the engines. Under certain flight conditions and in particular in the cruising phase, the engine resumes its normal bending state. Thus, the clearance at the end of the blades increases with the bypass ratio, so that the overall engine efficiency is reduced.




When the link between the propulsion system and the strut is ensured by a hybrid fan-type fixing device, as illustrated in

FIG. 1B

, the increase in the diameter of the fan increases aircraft resonance problems, which are particularly sensitive with this fixture type. Thus, this fixture is characterized by the fact that the system constituted by the strut and the engine behaves like a pendulum including a weight (the engine) hung on a wing by a spring (the strut). Under certain flight conditions, the wing excites the thus designed pendulum. To solve this problem, it is not acceptable to increase the hung weight. It is therefore necessary to increase the stiffness of the strut by increasing the thickness of certain of the components forming it. This phenomenon also exists on using core-type fixing devices, but the hybrid fan-type fixture is more prejudicial because it requires a greater weight increase for obtaining the same strut stiffness increase. This problem is accentuated on increasing the engine size. To avoid it, it would be necessary to rigidify the strut, whilst increasing its external dimensions. However, this would mean a significant increase in the strut width, weight, cost and aerodynamic drag, which is clearly undesirable.




DESCRIPTION OF THE INVENTION




The object of the invention is a device for fixing a propulsion system to a strut fixed to a structural element of an aircraft, whose original design enables it to better distribute the forces transmitted through the strut, in order to obviate the problems produced by an increase in engine size and weight.




A further object of the invention is a fixing device, whose original design enables it to reduce engine bending or sagging in the critical flight phases such as take off, so as to optimize engine performance characteristics when cruising.




Yet another object of the invention is a fixing device making it possible to ensure a good vertical and lateral stiffness of the fixture without increasing the dimensions of the strut, so as to eliminate aircraft resonating and vibrating problems without increasing the weight, cost or aerodynamic drag.




According to the invention, these results are obtained by means of a device for fixing an aircraft propulsion system to a strut fixed to a structural element of the aircraft, the propulsion system comprising an engine having a central casing and a fan stator case, the device including a first front mount and a rear mount system, respectively linking to the strut a front part and a rear part of the central casing of the engine, said device being characterized in that it also comprises a second front mount linking the fan stator case to the strut.




The use of at least three unaligned mounts for ensuring the transmission of forces exerted between the engine and the strut makes it possible to considerably reduce the pendulum effect and resonating effect of the aircraft resulting therefrom. This improvement is all the more pronounced as the fan diameter increases.




Moreover, as the forces exerted between the engine and the strut are transmitted thereto at at least three instead of two points, the bending phenomena of the engine and the engine-aircraft links are greatly reduced.




Moreover, the addition of at least one supplementary mount between the engine and the strut permits a better distribution of the forces having to be transmitted to the latter.




Thus, in a preferred embodiment of the invention, the second front mount is normally able to transfer forces mainly exerted in a direction Z oriented radially from the engine to the strut.




Here and in the remainder of the text, the term “normally” means “under normal flight conditions”, as opposed to special conditions such as the breaking of a part, landing without wheels down, etc.




The expression “forces mainly exerted in one direction” means here and in the remainder of the text that the forces transferred in this way from the engine to the strut are not necessarily perfectly oriented in said direction. Thus, in the case of the Z direction, said forces can be exerted in a direction Z′, which is inclined by a few degrees, e.g. in the OXZ plane, to reduce to the minimum the contribution of forces exerted in this direction to the bending of the engine.




In the preferred embodiment of the invention, the first front mount is normally able to transfer forces mainly exerted in a lateral direction Y with respect to the engine and the rear mount system is normally able to transfer forces exerted in the direction Z oriented radially from the engine to the strut and in the lateral direction Y, as well as a moment along the engine longitudinal axis OX.




In this case, the transmission of thrust forces in a direction X, longitudinal with respect to the engine, can take place normally either through the first front mount, or through the rear mount system, or through a fourth mount interposed between the central casing of the engine and the strut and allocated to said function.




The second front mount is connected to the fan stator case in a structural area thereof able to transmit forces. The first front mount and the rear mount system are connected to the central casing of the engine in structural areas of said casing able to transmit the forces. In the case of the second front mount, said structural area of the fan stator case can in particular be structurally connected to the central casing of the engine by stationary vanes.




The invention also relates to a strut for attaching a propulsion system to an aircraft structural element able to support the propulsion system by a fixing device of the type defined hereinbefore, in which the strut frame comprises a main part, whereof an interface can be connected to the engine casing by the first front mount and by the rear mount system, the strut frame also comprising a front part projecting with respect to the main part, at a location displaced towards the exterior of the propulsion system with respect to said interface, said projecting front part being connectable to the fan stator case by the second front mount.











BRIEF DESCRIPTION OF THE DRAWINGS




A description will now be given of non-limitative embodiments of the invention with reference to the attached drawings, wherein show:





FIG. 1A

, already described, diagrammatically and in perspective a propulsion system equipped with a core-type fixing device.





FIG. 1B

, already described, diagrammatically and in perspective a propulsion system equipped with a hybrid fan-type fixing device.





FIG. 2

a perspective view of a propulsion system connected to a strut by a fixing device illustrating a first embodiment of the invention.





FIG. 3

a view comparable to

FIG. 2

illustrating another embodiment of the invention.





FIGS. 4

to


6


comparable views to

FIGS. 2 and 3

illustrating variants of the strut according to the invention.











DETAILED DESCRIPTION OF SEVERAL PREFERRED EMBODIMENTS OF THE INVENTION





FIG. 2

shows a propulsion system


10


suspended on a not shown aircraft wing by means of an attachment strut. It should be noted that in a variant the strut can also be used for connecting the propulsion system


10


to another aircraft structural element such as a fuselage element. The orientations of the forces are then modified as a consequence of this.




The propulsion system


10


comprises an engine including a central casing


16


and a not shown pod coaxially surrounding said casing


16


. Stationary vanes


18


connect a front part of the central casing


16


of the engine to a fan stator case


20


completing the internal envelope of the pod around a not shown fan located to the front of the engine.




Moreover,

FIG. 2

only shows the frame


12


of the attachment strut for connecting the propulsion system


10


to the aircraft engine. The aerodynamic shroud and the structures used for supporting the different systems in the strut are not illustrated.




According to the invention, the propulsion system


10


is connected to the strut frame


12


by a fixing device comprising at least one rear mount


22


, a first front mount


24


and a second front mount


26


.




More specifically, the strut frame


12


in this case forms a box-type structure comprising a main part


12




a


, as well as a front part


12




b


. The front part


12




b


projects towards the front of the engine with respect to the main part


12




a


of the frame.




The main part


12




a


of the strut frame


12


comprises an interface


28


, which is oriented downwards in the described embodiment applied to the attachment of an engine beneath the wing of an aircraft. This interface


28


is connected to the central casing of the engine by the rear mount


22


and by the first front mount


24


in structural areas of the central casing


16


able to transmit forces and placed respectively to the rear and front of said central casing.




The front part


12




b


projecting from the strut frame


12


is located at a point displaced towards the exterior of the propulsion system


10


with respect to the interface


28


. It is connected to the fan stator case


20


by the second front mount


26


. More specifically, said connection is preferably located in an area of the fan stator case


20


structurally connected to the central casing


16


by stationary vanes


18


. As a variant, the second front mount


26


can also be connected to the fan stator case


20


in another part thereof, which is sufficiently rigid to ensure the transmission of forces.




In the above-defined fix OXYZ, the second front mount


26


is designed so as to only normally ensure, between the fan stator case


20


and the strut frame


12


, the transfer of forces mainly exerted along the Z axis. Therefore said mount


26


can in particular be constituted by a system of rods with a crossbar or by any other equivalent system able to fulfil the same function.




More specifically and as illustrated in

FIG. 2

, the forces transmitted to the frame


12


from the engine through the mount


26


can either be oriented in accordance with the OZ axis, or oriented in a direction Z′ inclined by a few degrees relative to the OZ axis. In other words, the direction of the forces transmitted to the strut frame


20


through the second front mount


26


comprises a principal component oriented in accordance with the OZ axis.




In the first embodiment of the invention illustrated in

FIG. 2

, the first front mount


24


can consequently be simplified compared with the core-type mount so as to only normally transfer between the central casing


16


of the engine and the strut frame


12


forces mainly exerted in the directions X and Y. In other words, the first front mount


24


then transfers to the strut frame


12


forces oriented in a direction X′ contained in the plane XOZ and including a principal component oriented in accordance with the OX axis and forces oriented in a direction Y′ contained in the YOZ plane and including a principal component oriented in accordance with the OY axis. This function can in particular be obtained by implementing the mount


24


in the form of a swivel pin in the central casing


16


or by any other equivalent mechanism able to fulfil the same function.




As in core-type fixing devices, the rear mount


22


is then designed as to normally transfer between the central casing


16


of the engine and the strut frame


12


forces exerted in directions Y and Z and moments M


X


exerted in accordance with the OX axis. Thus, the mount


22


can be implemented in the same way as in existing core-type fixing devices.




In the second embodiment of the invention illustrated in

FIG. 3

, the function of the second front mount


26


is unchanged compared with the first embodiment described hereinbefore. However, instead of being transmitted to the strut frame


12


through the first front mount


24


, the thrust forces mainly exerted in direction X are in this case transmitted through the rear mount


22


.




Thus, the first front mount


24


can be further simplified, so as to only transfer normally between the central casing


16


of the engine and the strut frame


12


forces exerted mainly in the direction Y, i.e. forces exerted in a direction Y′ contained in the plane YOZ including a principal component oriented in accordance with the OY axis. This function can in particular be obtained by implementing the mount


24


in the form of a rod connecting a cap integral with the central casing


16


to a cap for fixing to the strut frame or by any equivalent mechanism able to fulfil the same function.




As in the hybrid fan-type fixing devices, the rear mount


22


is then designed so as to normally transfer between the central casing


16


of the engine and the strut frame


12


forces exerted in the lateral Y and vertical Z directions with respect to the central casing


16


, as well as moments M


X


along the OX axis. Moreover, two not shown rods connect the rear mount


22


to the front part of the central casing


16


of the engine to enable the rear mount


22


to take up forces exerted mainly in direction X, i.e. in a direction X′ contained in the plane XOZ and including a principal component oriented in accordance with the OX axis.




In another not shown embodiment, the forces mainly exerted in the direction X are not taken up either by the first front mount


24


or by the rear mount


22


, but instead by a fourth mount connecting the central casing


16


of the engine to the strut frame


12


. This fourth mount can be placed between the mounts


22


and


24


, in front of the first front mount


24


or behind the rear mount


22


at a different or identical level thereto.




As a result of the layout according to the invention, the point of taking up forces in direction Z′, at the front of the engine, is displaced to the fan stator case


20


compared with the known core-type devices. This feature makes it possible to obtain a better force distribution. Thus, the point of taking up forces in the direction Z′ is located closer to the engine air intake, so that it is easier to counter the force exerted by the air on the front of the pod in said direction Z′. Thus, the contribution of said force to the bending of the engine is reduced.




Moreover, the taking up of the force in the direction Z′ by the mount


26


makes it possible to relieve the mount


24


. Thus, the latter only has to now take up forces in direction Y and possibly in direction X under normal conditions.




With regards to the strut frame


12


, the attachment point of its front part


12




b


is reinforced in order to take up, without any deformation or fracture of the fan stator case, the force in the direction Z. This is why the mount


26


is located in a reinforced structural area of the fan stator case


20


, such that said area is structurally connected to the engine casing


16


by stationary vanes


18


.




Moreover, the attachment point of the main part


12




a


to the front of the engine casing


16


through the mount


24


is comparable to that encountered in a core-type fixing device. Therefore the box-type structure of the frame


12


is extended forwards up to the mount


24


. As has already been stated, the layout according to the invention makes it possible to simplify said mount


24


, which now only takes up forces in two directions instead of three in core-type devices. However, it should be noted that the mount


24


can be designed to take up other forces under special conditions (broken parts, secondary path, landing without wheels down, etc.).




In the embodiments diagrammatically illustrated in

FIGS. 2 and 3

, the strut frame


12


is integrally implemented in the form of a box-type structure. However, any other embodiment of the frame


12


able to transmit forces to the aircraft structure can be envisaged, as illustrated by

FIGS. 4

to


6


.




Thus,

FIG. 4

illustrates the case where the main part


12




a


of the frame


12


is in the form of a box-type structure, whereas the front part


12





b


is a pyramidal structure formed by four arms connecting the mount


26


to the main part


12




a.






In the case of

FIG. 5

, a main, box-type part


12





a


of the strut frame


12


respectively connected to the fan stator case


20


and to the central casing


16


of the engine by the mounts


26


and


22


is supplemented by a pyramidal structure


12




c


linking the main part


12




a


to the mount


24


.




Finally,

FIG. 6

illustrates the case where the strut comprises a main, box-type part


12





a


, a pyramidal front structure


12





b


linking the mount


26


to the part


12





a


, and another pyramidal structure


12




c


linking the mount


24


to the part


12





a.






Any other structure (lattice, etc.) can be adopted for the strut frame


12


without passing beyond the scope of the invention.




In conclusion, the layout according to the invention permits a better distribution of forces and avoids the known problems of conventional layouts. It also simplifies the mounts by reducing the number of forces to be taken into account.




As has already been stated, the rear mount can be implemented in the same way as in existing fixtures (e.g. of the core type). As a variant, it can also be implemented in the form of a mount or attachment system in which the functions of taking up forces exerted in the directions Y and Z and moments M


X


exerted in the OX axis are separated without passing beyond the scope of the invention.




Finally, it should be noted that the invention can be applied to a strut, whose box-type frame has either a trapezoidal or a rectangular cross-section.



Claims
  • 1. Device for fixing an aircraft propulsion system to a strut fixed to a structural element of the aircraft, the propulsion system including an engine having a central casing and a fan stator case, the device comprising:a first front mount and at least one rear mount, respectively directly connecting to the strut a front part and a rear part of the central casing of the engine; and at least one second front mount directly connecting the fan stator case to the strut.
  • 2. Device according to claim 1, wherein the second front mount is normally able to transfer forces exerted mainly in a direction oriented radially from the engine to the strut.
  • 3. Device according to claim 1, wherein the first front mount is normally able to transfer forces exerted mainly in a lateral direction with respect to the engine and the rear mount system is normally able to transfer forces exerted in said radially oriented direction and in the lateral direction, as well as a moment in accordance with a longitudinal axis of the engine.
  • 4. Device according to claim 3, wherein the first front mount is also normally able to transfer forces mainly exerted in a longitudinal direction with respect to the engine.
  • 5. Device according to claim 3, wherein the mount system is also normally able to transfer forces mainly exerted in a longitudinal direction with respect to the engine.
  • 6. Device according to claim 3, wherein a fourth mount, normally able to transfer forces exerted mainly in a longitudinal direction with respect to the engine, also links the central casing of the engine to the strut.
  • 7. Device according to claim 1, wherein the second front mount is connected to a structural area of the fan stator case able to transmit said forces and the first front mount and the rear mount system are connected to structural areas of the central casing of the engine able to transmit said forces.
  • 8. Device according to claim 1, wherein the mounds transfer the forces exited on the engine to the strut.
  • 9. Strut for attaching a propulsion system to an aircraft structural element able to support the propulsion system by fixing device, the propulsion system including an engine having a central casing and a fan stator case, the device comprising:a first front mount and a rear mount, respectively directly connecting to the strut a front part and a rear part of the central casing of the engine; and at least one second front mounting directly connecting the fan stator case to the strut, wherein the strut frame comprises a main part, whereof an interface can be connected to the engine casing by the first front mount and by the rear mount the strut frame also comprising a front part projecting with respect to the main part, at a location displaced towards the exterior of the propulsion system with respect to said interface, said front, projecting part being connectable to the fan stator case by the second front mount.
Priority Claims (1)
Number Date Country Kind
99 06216 May 1999 FR
US Referenced Citations (6)
Number Name Date Kind
4458863 Smith Jul 1984 A
5181675 Lardellier et al. Jan 1993 A
5409184 Udall et al. Apr 1995 A
5452575 Freid Sep 1995 A
5524847 Brodell et al. Jun 1996 A
5806792 Brossier et al. Sep 1998 A
Foreign Referenced Citations (2)
Number Date Country
0741074 Nov 1996 EP
0805108 Nov 1997 EP