The invention relates to a device for frictionally coupling two coaxial components according to the preamble of the independent patent claim as well as a method for assembly and disassembly of such a device.
Various possibilities are known for the torsion-proof connection of two coaxial components, for example, of two shafts or a shaft and a hub. In order to enable simple and rapid assembly, maintenance and disassembly, such connections must additionally be non-destructively detachable.
Inter alia, frictional connections by means of a conical oil press fit are widely used. In this connection, for example, a hub having a conical inner bore is pressed onto a shaft having a conical peripheral surface, oil being pressed into the intermediate gap, causing the outer piece to be elastically enlarged so that it can be pushed onto the inner cone. After reaching the desired position, the oil pressure in the gap is released, with the result that the outer piece contracts and fits onto the inner piece. As a result of the persistent elastic deformation of the outer piece, a contact pressure results between the contact surfaces of the inner piece and the outer piece. The maximum torque which can be transmitted with such an oil press fit is proportional to this contact pressure, the contact area and the coefficient of static friction between the surfaces.
The manufacture of shafts having conical pins and hubs having a conical inner bore is complex and expensive and in the event of faulty manufacture, the entire, in some cases very large and heavy component can become unusable. In addition, the components to be connected are frequently supplied by different manufacturers, which requires precise coordination. It is therefore frequently more cost-effective to provide both components with cylindrical inner or outer surfaces and to connect these by means of a corresponding oil press fit coupling device. Such a device consists of an inner sleeve comprising a cylindrical inner casing and a conical outer casing, and an outer sleeve comprising a conical inner casing and a cylindrical outer casing. The outer sleeve is then pressed onto the inner sleeve with the result that a frictional connection is formed on the one hand between both sleeve parts and on the other hand between inner sleeve and shaft or outer sleeve and hub. If appropriate, only the inner or the outer sleeve is used, which then cooperates directly with the cone surface of the outer component. Similarly, a coupling device comprising inner and outer sleeves is also used for frictional connection of two coaxial shafts having cylindrical pins, the inner sleeve being disposed above the opposing shaft ends so that after pressing on the outer sleeve, the two shafts are frictionally connected to the coupling device and therefore to one another. Conical oil press fit couplings of the aforesaid types are supplied, for example, by Voith Turbo, Heidenheim, Germany under the designation “Hycon”.
The pressing of the conical hub or the outer sleeve onto the conical inner piece is preferably accomplished by means of a hydraulic tool, which can push or pull the outer conical part in the direction of increasing circumference onto the inner cone. In order to expand the outer component and optionally the outer sleeve, oil is pressed hydraulically into the conical gap so that the two conical surfaces no longer rest one upon the other. The corresponding oil clearance pressure results in an axial force in the direction of decreasing circumference of the inner cone. This is the product of oil clearance pressure and projection of the conical peripheral surface along the longitudinal direction. Such a hydraulic tool is disclosed, for example, in EP 1775490 A1 in which a hydraulic nut is screwed onto a shaft and a roller bearing is pressed onto a conical shaft end by means of a pressurised ring piston.
Systems are also known in which the hydraulic tool is integrated in the coupling device. For example, SKF Coupling Systems AB, Hofors, Sweden supplies such a coupling device under the designation “OKC” and “OKF”. This consists of a conical inner sleeve, conical outer sleeve and a ring piston which is connected to the inner sleeve at the outer end and forms a hydraulic chamber together with the outer sleeve.
For explanation,
In the known conical oil press fit coupling devices, it can occur when releasing the oil clearance pressure after reaching the end position that as a result of the decreasing axial force of the oil clearance pressure whilst the tensile force remains constant, the sleeve 31 slips abruptly to the left once again which, on the one hand, can result in the tolerances for the elongation of outer sleeve 31 and hub 5 being exceeded and on the other hand, can lead to a non-perpendicular uncontrolled placement of the conical surfaces 22, 32 onto one another, which can cause damage to the surfaces. At the same time, scratches can be formed which increase the leaks at the gap ends, which can even have the result that the necessary oil clearance pressure can no longer be achieved for a subsequent disassembly. In such a case, the coupling device can no longer be detached in a non-destructive manner. The same problem can also arise during the disassembly of a coupling device, wherein the outer sleeve 31 can slip in both directions when increasing the oil clearance pressure depending on whether the force of the hydraulic tool is too large or too small.
Since in the case of irregularly formed outer parts, in particular in the case of hubs 5, the radial elasticity is not identical over the length, it can be that the oil clearance becomes irregularly thick as a result of the different pressing forces. In such cases, peripheral seals 35′, 35″ are advantageously arranged at both ends of the outer sleeve 31 in order to minimise the leakage at the gap ends and thus achieve a higher oil clearance pressure.
In other known conical oil press fit coupling devices, the inner sleeve 21 is coated to increase the coefficient of static friction, whereby an increase in the coefficient of static friction from μ=0.14 (steel/steel) or μ=0.18 (steel/steel degreased) to μ=0.3 is possible. This improved value allows the transmission of greater torques or the smaller design of coupling devices. When pressing-on the outer sleeve and in particular during an abrupt slippage when releasing the oil pressure, as has been described above, the special coating can destroy the seals 35′, 35″ consisting of plastic. Increasing the coefficient of static friction is therefore not very compatible with the use of seals to increase the maximum oil clearance pressure.
It is the object of the invention to provide a device for frictionally coupling two coaxial components which does not have the aforesaid disadvantages and in particular allows secure assembly and disassembly of the coupling device without abrupt slippage of the outer sleeve. A method for the secure assembly and disassembly of such a coupling is also to be provided as well as a hydraulic tool and a coupling for use in a device according to the invention.
These and other objects are achieved by a device according to the invention, a hydraulic tool according to the invention, a coupling according to the invention and a method according to the invention according to the independent claims. Further preferred embodiments are given in the dependent claims.
In a device according to the invention, abrupt slippage is prevented by providing securing means which adjustably specify a maximum displacement end position of the outer coupling element in the direction of the increasing cone circumference of the inner coupling coupling element or fix the desired end position of the outer coupling element after this has been reached. These securing means can be configured in various ways as will be explained hereinafter. They can be arranged, for example, on the hydraulic tool or at the end of the coupling device opposite the hydraulic tool.
The device according to the invention is explained hereinafter with reference to drawings.
A first inner coupling element 2 in the form of a sleeve 21 having a cylindrical inner surface 23 and a conical outer peripheral surface 22 is disposed on the shaft 4. In turn, a second outer coupling element 3 in the form of a sleeve 31 having a conical inner peripheral surface 32 and a cylindrical outer surface 33 is disposed on the inner sleeve 21. Finally, the hub 5, which is a flanged hub here, is disposed on the outer sleeve 31. A hydraulic tool 6, i.e. a hydraulic nut, is positively connected to the outer sleeve 31 by means of connecting elements 67, i.e. a plurality of screws 67, and is capable of exerting a tensile force acting to the left in the longitudinal direction on the outer sleeve 31. The individual elements of the device 1 shown correspond to those of the device from
In the device 1 in
During the assembly itself, the securing means 7 is not connected to the outer sleeve 31. After reaching the end position of the outer sleeve 31 and the hub 5, the ring is pushed to the left until it is present at the inner sleeve 21. The screws 77 are then inserted through holes in the ring and screwed into corresponding threaded holes of the outer sleeve 31 and gently tightened until there is no longer any play between ring 7 and inner sleeve 21. The oil clearance pressure psp can then be uniformly reduced to zero. Although the rightwardly acting force of the oil clearance pressure now becomes smaller with the force to the left, the outer sleeve can no longer slip to the left because this is prevented by the securing means 7.
After a waiting time in which the oil can flow completely out from the conical gap, the hydraulic pressure pax can be released and the hydraulic tool 6 removed. The securing means 7 preferably remains in place. It can, however, be composed of two or more segments so that it can be removed again after assembly.
During disassembly of the device 1 according to the invention, the hydraulic tool 6 and, if still present, the securing means 7 is positively fastened to the outer sleeve 41. The hydraulic pressure of the tool 6 pax is then raised to a maximum value pax,2, this pressure preferably being higher than the highest axial pressure pax, 1 during assembly. The tensile force thus produced is initially absorbed by the static friction between the sleeves 21, 31. The oil clearance pressure is then increased to a value psp,1 at which a sufficient oil clearance is produced. The tensile force is now absorbed by the securing element 7 and slippage of the sleeve 31 to the left is thus rendered impossible by the securing means 7. Slippage to the right is in turn prevented by the strong axial tensile force of the hydraulic tool 6, in which case the tensile force must naturally be larger than the force of the oil clearance pressure. The hydraulic pressure pax can then be slowly reduced. If the tensile force now becomes smaller than the oppositely directed force of the oil clearance pressure, the outer sleeve 31 begins to move towards the right as far as a disassembly position. Since an oil clearance is provided in this case from the very beginning, no damage can occur.
Naturally, a device according to the invention can also be achieved similarly with a shaft having a conical pin, wherein this conical pin itself is then the inner coupling element 2.
Operation is accomplished similarly to the embodiments already discussed. Before releasing the oil clearance hydraulic pressure at the end of the assembly process or before building up the axial hydraulic pressure of the hydraulic tool 6 and the oil clearance hydraulic pressure during disassembly, the securing ring 7 is screwed into the internal thread of the outer sleeve 31 until the shoulder 71 rests on the edge of the inner sleeve 21. The outer sleeve 31 can now not be pushed any further to the left onto the inner sleeve 21. After assembly, the securing ring 7 preferably remains in place. In order to prevent the securing ring coming loose during turning of the shaft, for this purpose a threaded bolt 78 is provided in a corresponding radial hole in the outer sleeve 31, this bolt being screwed onto the external thread 771 and thus fixes the securing ring 7.
This variant has the particular advantage that the outer sleeve 31 can be constructed more simply, in particular without axial holes or internal threads and that no securing means 7 remains on the assembled coupling device 1 but remains on the removable hydraulic tool 6 which can be used many times, which reduces the manufacturing costs.
1 Coupling device
71 Stop element
Number | Date | Country | Kind |
---|---|---|---|
07118725.6 | Oct 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH08/00415 | 10/6/2008 | WO | 00 | 5/7/2010 |