The present invention relates to a device for grinding saw teeth tipped with hard metal and to a corresponding method.
In the chip removal, hard metal-tipped saw blades and saw bands are of high economic significance and are used expansively. In trade, two-handed electrical saber saws are often used for perpendicular cuts, the hard metal-tipped cutting edges of which make them suitable for severing tree roots in the ground, for disassembling structural components, for metal cutting by the fire department and other rescue organizations, as well as for the severing of metals. However, such saw blades and saw bands are also used in the industry for machining metals, plastics or wood. Correspondingly high demands are made on the precision of the tooth geometries, which can thus not be adjusted with the required precision using normal milling processes.
Hard metal-tipped saw blades as well as bands have a large variability with respect to the tooth width and the tooth geometry. They are initially made of a blank, in that a metal band is unrolled from a coil, is optionally rotated and aligned. Raw teeth are milled into this metal band and hard metal pins are subsequently welded on in the transition area between future tooth face and future tooth back. These hard metal pins are then ground to size in a grinding machine, for the purpose of which diamond grinding wheels are commonly used. After this operating step, tooth face and tooth back are at the final dimension. Depending on the tooth pitch and wedge angle to be produced, a corresponding diamond grinding wheel is used thereby. A grinding of the two side surfaces of the future saw band takes place subsequently, optionally followed by a cutting to the desired length of the finished saw blade or band. The unrolling of the blank from the coil as well as the further operating steps typically follow in a timed manner, at least within those operating steps, by means of which a hard metal-tipped saw blade/saw band, which is to be manufactured, is processed continuously. Buffer paths between the individual processing stations (machines) have to optionally be planned thereby, if the timing cannot be maintained throughout the entire manufacturing line.
The correct grain of the grinding wheels, adapted grinding parameters, as well as an optimal grinding pressure are important parameters for the grinding process on the tooth. Due to the required high precision, it was previously known to use corresponding grinding machines, which in each case process a hard metal-tipped tooth of a saw blade with respect to tooth face and back by means of grinding. The manufacturing time per tooth is thereby usually several seconds, because the hard metal layer thickness to be removed can often not be removed by means of a single feed process of the grinding wheel. It is thus known to use a plurality of such processing machines, in order to be able to simultaneously process a plurality of bands.
The present invention has the object of specifying a more efficient device and a more efficient method for grinding teeth.
The device object is solved by means of a device for grinding hard metal-tipped teeth of saw bands, having a feed device for feeding a temporary workpiece in a timed manner, wherein the temporary workpiece is formed from a plurality of saw bands, which are parallel to one another, further having a clamping device, which clamps the plurality of saw bands against one another, further having a grinding unit for simultaneously grinding a plurality of teeth, wherein the grinding unit has a grinding wheel comprising a plurality of grinding profiles. The provision according to the invention of a plurality of grinding profiles on a grinding wheel, in particular a grinding wheel embodied in a roller-shaped manner, which has a variety of tooth face grinding profiles and tooth back grinding profiles, has the highly advantageous result that a block, forming a temporary workpiece, of a variety of parallel saw bands, which are aligned axially, can be processed simultaneously, thus that a plurality of teeth of a saw band, which in particular directly succeed one another, can be processed simultaneously, wherein the grinding wheel also processes the teeth of the saw bands, which are parallel, adjacent to this saw band, of the temporary workpiece. A plurality of feed processes of the grinding wheel are thereby usually required before, firstly, the tooth face, and then the tooth back are at the final dimension. The clamping device ensures that the teeth, which are parallel to one another, of the plurality of saw bands, are manufactured with the same manufacturing quality. Even though a longer processing time is thereby required for each temporary workpiece, the variety of identically produced teeth according to the invention leads to a significantly lower manufacturing time per tooth.
In an embodiment of the device, it is provided that it has a push-down unit and/or a timing unit and/or a cutting unit. The push-down unit ensures that all tooth backs have the same height above the tooth base, the timing unit advantageously ensures that each temporary workpiece is guided through the device at the correct measured time, and the cutting unit provides for the cutting of saw bands, which are manufactured to the final dimension, if saw blades are to be created. The timing unit is thereby preferably formed by an, in particular conical engagement mandrel, which simultaneously engages with the correspondingly shaped recesses of each saw band.
In an embodiment of the invention, it is further provided that it has spacers, preferably band-shaped spacers, which can in particular be inserted between two adjacent saw bands of a workpiece, particularly preferably segment-shaped spacers, which are arranged in the clamping device in a stationary manner. It is attained by means of this advantageous embodiment that the hard metal pins, which optionally protrude beyond the thickness of the saw band, do not lead to a negative impact of the processing of the adjacent saw band in the temporary workpiece. The thickness of the spacers thereby preferably corresponds to at least twice the tolerances of the length of the hard metal pins. The spacers are thereby in particular band-shaped spacers, preferably rotating, but, according to the invention, preferably segment-shaped spacers, which are arranged in the clamping device in a stationary manner.
Finally, it is advantageously also provided that the device combines between 2 and 80, in particular between 5 and 60, preferably between 20 and 40 metal bands, to form a temporary workpiece.
The device object is solved by means of a method for grinding hard metal-tipped teeth of saw bands, having the steps of:—clamping a plurality of parallel saw bands, which are aligned axially to one another, against one another to create a temporary workpiece,—simultaneously grinding the temporary workpiece at a plurality of locations, which are axially spaced apart,—further transporting the processed temporary workpiece, and re-clamping to create a new temporary workpiece. The simultaneous grinding according to the invention of a variety of raw teeth of a bundle of individual saw bands along an axial section of these saw bands highly advantageously leads to very short tooth processing times. During a processing time of several minutes of the variety of raw teeth of the temporary workpiece, significantly more than 1,000 teeth are often completed, depending on the tooth geometry to be manufactured.
In an embodiment of the method, it is provided that it further has one or a plurality of the following steps:—pre-milling of raw teeth in desired areas of the metal band,—unrolling a plurality of metal bands, each comprising pre-milled raw teeth and welded-on hard metal pins from a coil each,—rotating and aligning the respective metal bands,—inserting spacers between two adjacent metal bands,—pushing down a temporary workpiece during the grinding,—rolling up a plurality of processed metal bands to form a coil each.
In an embodiment of the method, it is provided that it has a step of cutting instead of rolling up a processed metal band.
The invention will be described in an exemplary manner in a preferred embodiment with reference to a drawing, wherein further advantageous details of the figures can be gathered from the drawing. Functionally identical parts are thereby provided with identical reference numerals.
In detail, the figures of the drawings show:
A feed device 4 is illustrated on the left in
As a function of the different tooth geometries to be manufactured, in particular relating to the clamping angle at the tooth face and the free angle at the tooth back, the grinding unit 7 is pivoted about a corresponding angle by means of a pivoting device 20, which is arranged downstream from the base plate 19 (on which the grinding unit 7 is mounted).
The pivoting device 20 consists of a stable pivot bearing 21 comprising a high-resolution rotary encoder 22 for the exact angle adjustment as well as an NC-controlled drive 23 (pivoting movement initiated via a tooth pinion and a tooth segment) as well as an automatic fastening device 24.
To support the unrolling process of the individual coils on the inlet side, a supply device 26, which is timed with the same timing as the feed device 4, is provided to the right of the clamping device 6.
The supply device 25, as does the feed device 4, consists of a clamping unit, a guide unit, and of a drive unit.
Tooth processing times are thus reached by means of the invention, which are below the current processing times by a factor of 10 or more, even if up to several minutes of processing time are required for each temporary workpiece. Due to the fact that thereby often more than 1,000 teeth are completed simultaneously, or even more depending on the tooth geometry, the tooth processing times are accordingly short.
In a highly advantageous manner, the grinding process according to the invention allows for high manufacturing speeds with simultaneously ensured highest processing precision, for the purpose of which a grinding wheel and a saw band bundling had to be developed.
For this purpose, the core method according to the invention consists of the steps of clamping a plurality of parallel saw bands, which are aligned axially to one another, against one another to create a temporary workpiece, simultaneously grinding the temporary workpiece at a plurality of locations, which are axially spaced apart, and further transporting the processed temporary workpiece, and re-clamping to create a new temporary workpiece. The following steps are added for a complete manufacturing process: pre-milling of raw teeth in desired areas of the metal band, unrolling a plurality of metal bands, each comprising pre-milled raw teeth and welded-on hard metal pins, from a coil each, rotating and aligning the respective metal bands, inserting spacers between two adjacent metal bands, pushing down a temporary workpiece during the grinding as well as after the core steps rolling up of a processed metal band to form a coil, alternatively cutting of a processed metal band instead of it rolling up.
Number | Date | Country | Kind |
---|---|---|---|
102018128684.8 | Nov 2018 | DE | national |