The invention concerns a device for grinding spinning cots, the device comprising a rotating grinding roller, a workpiece receptacle arranged on a pivot arm for receiving the spinning cot to be ground, wherein the pivot arm is supported on a carriage that is movable linearly relative to the grinding roller and is movable between a loading position and a grinding position, and comprising a feed device actuatable in accordance with the advancement or progression of the grinding process performed on the spinning cot toward the grinding surface of the grinding roller.
Such grinding machines for grinding spinning cots are disclosed in DE 32 26 573 A1 and US 2007/042689. They are used primarily in spinning mills. Here, the spinning cots, as transport rolls, have the task of guiding textile fibers. In this connection, the spinning cots are subject to great wear so that they must be reground frequently. Since the diameter of the spinning cots innately is dimensioned with oversize, they can be reground several times.
For exact regrinding on the grinding machine according to US 2007/042689, a significant control-technological expenditure is provided and this leads thus to correspondingly good grinding results. However, there are a few fields of application in which such machines are not usable or not useable within the range of their technical possibilities because their proper operation requires trained personnel and primarily specialists.
Primarily for cost reasons in smaller spinning mills and for minimal product quantities, a grinding machine for grinding spinning cots is therefore desirable that can be operated simply and intuitively while avoiding possible sources of error so that grinding results sufficient for many applications can be obtained with untrained personnel.
As a solution to the aforementioned object, a device for grinding spinning cots of the aforementioned kind is proposed in which the pivot arm, by means of the feed device, is embodied to be movable relative to the carriage and in which a device, actuatable independent of the feed device, is provided for manual adjustment of the carriage into a desired linear position.
In such a grinding machine, the individual components can be designed to be constructively simple, and, with respect to their function and operation, they are substantially intuitively operable so that an intuitive operation is possible even for untrained personnel. However, excellent grinding results can still be obtained and the quality corresponds to that of fully automated devices. This is achieved in that the feed action during the grinding process is not realized by advancing the linearly movable carriage but instead the carriage during the actual grinding process is standing still while the feed device that is manually actuated moves the pivot arm that receives the workpiece relative to the carriage. The carriage provides only a mechanical preadjustment of the maximum reachable feed location for the feed action wherein this preadjustment of the carriage during the subsequent grinding process is not changed anymore. This enables the possibility of grinding all spinning cots of a spinning machine to exactly the same final dimension after the latter has been mechanically adjusted once.
In one embodiment of the device, for realization of the feed device an eccentric drive is proposed that is integrated preferably into the pivot arm. This enables a simple and low maintenance construction that is also space-saving.
Preferably, for manual actuation of the feed device a manual lever is provided that is pivotable in the direction toward the grinding roller. This construction contributes to the intuitive operation of the grinding machine because for the operating personnel the correlation between manual actuation toward the grinding roller and the accordingly correlated grinding process is already visually apparent.
In a further embodiment, a second manual lever that is fixedly mounted on the pivot arm is proposed for pivoting the entire pivot arm. Moreover, it is proposed that the two manual levers are arranged at a spacing relative to one another so that upon operation of the device the first manual lever that pivots the pivot arm may be gripped with one hand and the other lever that effects the feeding action may be gripped with the other hand. The operation by means of two pivotable levers is simple, logical for the operator, and also contributes to the grinding machine being substantially intuitively operable.
According to a further embodiment, the feeding device is provided with a stop that mechanically limits the maximum feed stroke of the feed action.
According to a further embodiment, on the carriage the axis of rotation of a motor-driven drive roller is supported onto which the workpiece receptacle with the spinning cot can be lowered from above.
According to a further embodiment, the feed action is substantially horizontal wherein the drive roller is arranged such that the axis of the spinning cot during the course of the feed action moves across the axis of rotation of the drive roller.
Furthermore, it is proposed to provide a securing element in the form of, for example, a gas pressure spring that positions or secures the pivot arm in its loading position and in its grinding position.
One embodiment of the invention will be explained in the following with reference to the drawings.
In the Figures, only those elements of the grinding machine are illustrated which are important in the context of the invention. Schematically illustrated is a machine table 1 that is a fixed component of a stationary machine frame. On the machine table 1 a carriage 2 is movable in a horizontal guide. For moving the carriage 2 relative to the machine table 1 a spindle drive 7 is provided that can be actuated by a hand wheel 8. The spindle drive 7 has a scale ring with a scale of preferably 0.01 mm. A micrometer screw serves for exact alignment of the carriage 2.
On the machine table 1 or the machine frame of the grinding machine a grinding roller 3 is supported that is driven by means of its own electric motor. Its outer surface forms the grinding surface 4 for grinding the spinning cot. The effective length of the grinding roller 3, i.e., its grinding surface, is longer than the length of the spinning cot to be ground. In spite of this, for achieving a uniform grinding action it may be advantageous when the grinding roller 3 during operation performs a traversing movement.
Lateral walls 10 that serve for supporting a drive roller 12 and a pivot arm 17 are part of the carriage 2 that is horizontally movable. The drive roller 12 is supported near the grinding roller 3 on the carriage 2 and its drive action is realized by means of its own electric motor. The axis of rotation 13 of the drive roller 12 is somewhat lower than the axis of rotation of the grinding roller 3. During the grinding operation the drive roller 12, as a result of friction of its surface, will cause the spinning cot that is to be ground and rests on the drive roller to be entrained in rotation such that the spinning cot is rotated opposite to the rotation of the grinding roller 3 and its surface that is contacting the grinding surface 4 is ground.
A stably designed pivot arm 15 is supported at the location of the axis A1 on the carriage 2 or on its lateral walls 10. The pivot arm 15 can be pivoted about the axis A1 of the pivot bearing about approximately 90° for which purpose a manual lever 16 is rigidly connected to the pivot arm 15. This pivot movement moves the pivot arm 15 from an upwardly projecting loading position that is illustrated in
In order for the pivot arm 15 to be locked in the loading position as well as in the grinding position, a securing element in the form of a gas pressure spring 17 is supported pivotably with one end on the pivot arm 15 and with the other end on the carriage 2. The arrangement of the gas pressure spring 17 is such that it locks the pivot arm 15 in both end positions (loading position, grinding position), and such that a pivoting action or return pivot movement from these end positions by means of the manual lever 16 is possible only against increased resistance.
On the pivot arm 15, namely in the area that is farthest removed from the pivot axis A1 of the pivot bearing, there is a workpiece receptacle 20. Its important element is a bifurcated receptacle 21 that opens in a trapezoidal shape or V-shape for receiving the workpiece to be ground, i.e., a spinning cot 25. In the embodiment disclosed herein, the spinning cot 25 is a so-called top roller whose axle 24 that, in comparison to the remaining diameter of the spinning cot 25, is slim rests in a defined position in the receptacle 21 designed to have a trapezoidal shape. The spinning cot 25 is secured by a spring mechanism 27 whose pretension secures the spinning cot 25 in the workpiece receptacle 20.
Subsequently, the thus loaded pivot arm 15 is moved from the loading position illustrated in
Instead, for initiating the grinding process the workpiece receptacle 20 must be moved from the position illustrated in
The technical realization of the feed action is realized by an eccentric drive 31 which is integrated constructively into the pivot bearing of the pivot arm 15. According to
With a corresponding design of the eccentric drive, the feed device 30 is provided with a mechanically limiting stop that delimits a maximum feed stroke. When reaching this stop, a further feed stroke is no longer possible. In this way, it is prevented that, as a result of an excessive feed action of the workpiece receptacle 20 arranged on the pivot arm 15, a higher than predetermined degree of grinding will be performed. The adjustment of the grinding removal is realized instead beforehand by an appropriate horizontal positioning of the carriage 2. For this purpose, the carriage 2 is movable by means of the spindle drive 7 at a right angle to the axis of rotation of the grinding roller 3 and the axis of rotation 13 of the drive roller 12 wherein the movement path of the carriage 2 is arranged lower than these axes of rotation. The thus adjusted carriage position must not be changed anymore even when other spinning cots 25 of the same type are to be ground. Instead, with a complete pivoting of the manual lever 32 up to the mechanically preset stop the feed stroke is carried out to its maximum and a further feed action is then blocked.
The two manual levers 16, 32 are arranged at a spacing relative to one another. In this way, the operator can grip the manual lever 16 with the left hand and the other manual lever 32 with the right hand and guide them in this way. With the left hand the pivot arm 15 is therefore pivoted out of its loading position according to
For protecting the operator, on the pivot arm 15 a transparent protective panel 33 is mounted. The grinding machine can furthermore be provided with an attached dressing diamond that can be advanced by means of a knob and a fine thread. As needed, the dressing diamond is moved by hand slowly across the grinding roller 3 until no removal occurs anymore.
Optionally, a suction device may be furthermore provided that continuously removes by suction the grinding dust.
The specification incorporates by reference the entire disclosure of German priority document 10 2009 006 965.8 having a filing date of Jan. 31, 2009.
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 006 965 | Jan 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1843414 | Busch | Feb 1932 | A |
2639558 | Cotchett et al. | May 1953 | A |
2644276 | Swanson | Jul 1953 | A |
2719391 | Brown | Oct 1955 | A |
2735234 | Swanson | Feb 1956 | A |
4422200 | Atwater | Dec 1983 | A |
20070042689 | Stentenbach | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
3226573 | Jan 1984 | DE |
Number | Date | Country | |
---|---|---|---|
20100197206 A1 | Aug 2010 | US |