This application is the National Stage of PCT/EP2011/004312 filed on Aug. 27, 2011, which claims priority under 35 U.S.C. §119 of German Application No. 10 2010 044 356.5 filed on Sep. 3, 2010, the disclosure of which is incorporated by reference. The international application under PCT article 21(2) was published in English.
1. Field of the Invention
The invention relates to a device for guiding a saddle pole in a cladding tube
2. The Prior Art
Saddle poles for fastening bicycle saddles are usually fixed in the saddle tube with a mechanical clamp. Consequently, the saddle tube is generally slit at the upper end so that the periphery of the tube is reduced by the clamping effect and thus the saddle tube bears upon the saddle pole with a positive fit. The clamp is tightened with a screw and nut connection or a quick clamping device is used, at which the clamping force is reached by changing the position of a lever. Such a “quick release lever” enables to adjust the height of the saddle and to fix it without tool. This is for example necessary if the bicycle is going to be ridden by people of different size or if the saddle should be adapted for one and the same rider using certain parameters. Such is the case for instance when riding in difficult terrain, as in particular in mountain biking with mountain bikes. Uphill, the height of the saddle must be adjusted optimally from an ergonomic viewpoint so as to achieve good power transmission. When going downhill, the rider must shift his centre of gravity backwards and downwards according to the steepness and to the difficulty and to that end he must often bring his buttocks behind the saddle. The deeper the saddle, the easier the rider can shift his centre of gravity actively and dynamically, but thereby also loses on cornering forces which he can apply with the inside of its thighs against the saddle when the latter is accordingly in a raised position. The optimal height of the saddle therefore depends on the respective riding condition.
The shortcoming of the described clamping devices lies in that the rider must dismount every time and adjust the height of the saddle. Different devices for (semi-automatic) height adjustment of a bicycle saddle are therefore already offered on the market, which the rider can adjust while riding his bike.
Since these semi-automatic saddle poles (as described for instance in document DE 10 2010 044 356.5) are not clamped any longer in their respective position as mentioned above, but rather locked via a pin or similar or for instance fixed hydraulically, they naturally have a clearance, which is necessary on the one hand so that the height of the saddle pole can be adjusted easily, which is undesirable on the other hand while riding his bike, i.e. when the saddle pole is locked, because the rider has a mechanically unstable feeling.
A height adjustable saddle pole is disclosed in the international patent application WO 2007/117884 A2, which is run in the cladding tube by means of a bushing (
The object of the invention is hence to provide a guiding means for a saddle pole so that on the one hand the saddle pole can be adjusted easily and on the other hand is fixed free of play as far as possible under stress.
This object is met by a device for guiding a saddle pole in a cladding tube, wherein at least one slide block installed on the saddle pole, at the lower end of the saddle pole the slide block(s) engage in a groove-shaped recess in the cladding tube, the groove-shaped recesses of the cladding tube have at least one length, which corresponds to the requested adjustment stroke of the saddle pole, whereas at least one contact surface of the saddle pole, on which a planar slide block is installed, is planar, and the side of the planar slide block, which is installed on the saddle pole with the planar contact surface, also has a planar surface.
The expression “planar slide block” should be understood in the sense of this application as only the side of the slide block, against which it abuts or which it is installed on the planar contact surface of the saddle pole, should be planar. The other sides of the planar slide block can have other surface geometries. They can be for example semi-round, whereas “round” should not be understood in the sense of circular but can be rather any curved line in its longitudinal cross-section. This embodiment of the slide block enables to vary its thickness without having to modify the form of the receiving groove, as it would be the case with a round slide block. Other possibilities, described more in detail below, can also be provided (except for the use of slide blocks of various thickness), so as to adapt the guiding means of the saddle pole in the cladding tube to the respective manufacturing tolerances of an individual saddle pole.
An advantageous variation of the invention is characterised in that at the lower end of the saddle pole, in its front area (as seen in driving direction) at least one groove-shaped recess is inserted each for receiving a front slide block and in its rear area a groove-shaped recess having a planar contact surface is inserted for receiving a rear planar slide block.
The advantage of said variation is due to the fact that during riding the load transfer into the front region of the cladding tube is high which is introduced optimally into the cladding tube by at least one slide block as well as the matching groove in the cladding tube. The guiding system is then optimal and stable when two slide blocks are provided spaced apart symmetrically laterally, relative to the driving direction, in the front area of the saddle pole.
The guiding system of the saddle pole can be optimised further by designing the front slide blocks also as planar slide blocks (GR) and when the front grooves in of the saddle pole also have planar surfaces. The play between saddle pole and cladding tube can also be adjusted using the thickness of the front slide blocks or via an adjustment foil.
According to another advantageous embodiment of the invention, the rear planar slide block has a rectangular cross-section. This is the easiest way of making such a slide block, if required in different thickness.
The manufacturing tolerances between saddle pole and cladding tube cannot be compensated for by slide blocks of different thickness only, but there is according to another advantageous embodiment of the invention also the possibility to provide an adjustment foil between the planar slide block and the matching planar surface of the saddle pole.
If the manufacturing tolerances can also be well compensated for by the use of slide blocks of different thickness and/or of adjustment foils a certain play must be left between saddle pole and cladding tube to guarantee that the height of the saddle pole can still be adjusted smoothly. To prevent said play from producing an unpleasant feeling due to a clattering and/or wobbling saddle pole, means are provided according to another advantageous embodiment of the invention with which the saddle pole is prestressed resiliently with respect to the cladding tube, preferably via at least one slide block. For that purpose, a slide block (preferably the planar slide block) itself can be prestressed in a convex manner or the adjustment foil (which may also consist of sheet metal or spring steel or a resilient synthetic material) is prestressed in a convex manner, or other means are provided, with which a spring effect can be obtained between saddle pole and cladding tube.
According to another advantageous embodiment of the invention, the cladding tube is the saddle tube of a bicycle. This enables to dispense with a separate cladding tube which is usually inserted into the saddle tube of the bicycle, and hence to reduce the weight thereof.
Two further advantageous embodiments of the invention are characterised in that the wall thickness of the saddle pole as well as the wall thickness of the cladding tube are reinforced in the region of the groove-shaped recesses. This enables to optimise the ratio between weight and stability.
An exemplary embodiment of the invention is described below using drawings. Wherein:
The optimal arrangement of the slide blocks is shown in the representation of the saddle pole ST according to
The section E of
To meet this target, a round slide block GR prestressed resiliently in a convex manner is provided in
To conclude, it should be pointed out that the saddle pole is guided without any additional or other guiding means (this does not apply for guiding means, which can be foreseen at the upper end of the cladding tube HR. Such guiding means are not subject of this invention. An example for such guiding means can be seen in the DE 10 2010 044 356.5 and are well known to the person skilled in the art from the state in the art), thanks to the constructive measures described, which is on the one hand adapted optimally to the load situation during riding and to the forces hence acting upon the saddle pole, on the other hand, the device according to the invention prevents at the same time the saddle pole from being twisted with respect to the cladding tube.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 044 356 | Sep 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/004312 | 8/27/2011 | WO | 00 | 4/9/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/028282 | 3/8/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
792733 | Schoenherr | Jun 1905 | A |
3722929 | Gilman | Mar 1973 | A |
3852850 | Filhaber | Dec 1974 | A |
4033438 | Wiltsey | Jul 1977 | A |
4097756 | Gee | Jun 1978 | A |
4182508 | Kallai et al. | Jan 1980 | A |
4311224 | Kato et al. | Jan 1982 | A |
4772069 | Szymski | Sep 1988 | A |
4792713 | Bush | Dec 1988 | A |
5645366 | Ishibashi et al. | Jul 1997 | A |
5713555 | Zurfluh et al. | Feb 1998 | A |
5881988 | Liu | Mar 1999 | A |
6354557 | Walsh | Mar 2002 | B1 |
6769830 | Nygren | Aug 2004 | B1 |
6824471 | Kamenov | Nov 2004 | B2 |
7083180 | Turner | Aug 2006 | B2 |
7422224 | Sicz et al. | Sep 2008 | B2 |
8317261 | Walsh | Nov 2012 | B2 |
20010016146 | Blanchard | Aug 2001 | A1 |
20060066074 | Turner | Mar 2006 | A1 |
20060175792 | Sicz et al. | Aug 2006 | A1 |
20080199254 | Baker et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
42 37 864 | May 1994 | DE |
94 05 449 | Sep 1994 | DE |
198 55 161 | Feb 2000 | DE |
20 2007 014 515 | Jan 2008 | DE |
20 2008 015 968 | Apr 2010 | DE |
10 2010 044 356 | Mar 2012 | DE |
0 148 979 | Jul 1985 | EP |
2 758 305 | Jul 1998 | FR |
2007117884 | Oct 2007 | WO |
Entry |
---|
International Search Report of PCT/EP2011/004203, Oct. 31, 2011. |
International Search Report of PCT/EP2011/004312, Oct. 11, 2011. |
Number | Date | Country | |
---|---|---|---|
20130209160 A1 | Aug 2013 | US |