This application claims priority to and the benefit of European Patent Application 18 150 151.1, filed 3 Jan. 2018, the contents of which are hereby incorporated by reference in their entirety.
This relates to a device for handling notes of value, including a first module and a second module, the first module and the second module each having a transport mechanism for transporting notes of value. Further, the device includes a third module including a first guiding element and at least a second guiding element for guiding the notes of value. In one operating state of the device, the notes of value are guided by the guiding elements of the third module during the transport from the first module to the second module and/or from the second module to the first module, wherein in this operating state the guiding elements are oriented in an operating position for guiding the notes of value.
Known automated teller machines include a safe in which cash boxes filled with banknotes are receivable. The safe has an opening through which banknotes removed from the cash boxes are feedable from the safe to a head module and/or deposited banknotes are feedable from the head module to the safe. The head module in particular includes an input and output module, by which banknotes to be dispensed to a user are output and/or banknotes to be deposited by the user are accepted. Both the head module and the safe each include a transport mechanism for transporting the notes of value. For a reliable transfer of the notes of value between the safe and the head module the safe includes two guiding elements, between which the notes of value are guided during the transport from the safe to the head module and/or from the head module to the safe. The guiding elements project from the safe toward the head module, and in particular into the head module. For assembly, disassembly and maintenance, the head module is in particular designed such that it is movable out of the automated teller machine relative to the safe.
From document DE 102009038175 A1, a device for handling notes of value is known, in which guiding elements project from the safe into the head module in an operating position and in which the head module and the safe module are movable relative to each other in an easy and space-saving manner. The guiding elements are held in the operating position by one spring each. When moving the modules relative to each other, the guiding elements are rotated by the contact with the first module against the spring force of the springs about axes of rotation of the guiding elements toward the second module and are thus folded down. The guiding elements are folded down only as long as the first module contacts the guiding elements. When there is no contact between the first module and the guiding elements, the guiding elements again assume their operating position due to the spring force of the springs. The springs, however, are subject to wear so that in practice a correct orientation of the guiding elements in their operating position is not always guaranteed. Also in the case of different spring forces and/or different spring constants as a result of manufacturing tolerances a correct orientation of the guiding elements in their operating position is not always guaranteed.
In at least one embodiment, a device for handling notes of value, provides an easy and reliable manner for orientation of guiding elements in the operation position.
According to at least one embodiment, the first guiding element includes at least a first magnet and the second guiding element includes at least a second magnet or a ferromagnetic material. The first magnet and the second magnet or the first magnet and the ferromagnetic material are arranged opposite to each other at least in the operating state, an attractive force acting between the first magnet and the second magnet or the first magnet and the ferromagnetic material. As a result, a reliable and correct orientation of the guiding elements in the operating position is achieved. Hereby, it is in particular prevented that the guiding elements are moved out of the operating position inadvertently, for example due to the forces developed by the banknotes transported between them.
In an advantageous embodiment, a first elastically deformable element is provided, which exerts a holding force on the first guiding element for holding the first guiding element in the operating position for guiding the notes of value. Further, a second elastically deformable element is provided which exerts a holding force on the second guiding element for holding the second guiding element in the operating position for guiding the notes of value. Thus, the holding force of the elastically deformable elements acts in addition to the magnetic attractive force so that a particularly safe and reliable orientation of the guiding elements in the operating position is guaranteed.
It is particularly advantageous when the first guiding element is arranged so as to be rotatable about a first axis of rotation coinciding with its longitudinal axis, and when the second guiding element is arranged so as to be rotatable about a second axis of rotation coinciding with its longitudinal axis. Thus, it is achieved that, when moving the modules to each other, the guiding elements are rotated about the respective axis of rotation and are thus folded down or pivoted. In this way, when moving the modules, no elastic deformation of the guiding elements is required so that material fatigue and other material damages are prevented.
Further, it is advantageous when at least a portion of the first guiding element that is arranged in the operating position projects into the first module and/or when at least a portion of the second guiding element that is arranged in the operating position projects into the first module. In this way, the reliability of the guidance of the notes of value during the transport between the first and the third module is increased.
In an advantageous embodiment, the first magnet is connected to a first lever including a first positioning element or the first lever including the first positioning element is the first magnet. Further, the second magnet or the ferromagnetic material is connected to a second lever including a second positioning element or the second lever including the second positioning element is made of a ferromagnetic material or the second lever including the second positioning element is the second magnet. The first positioning element and the second positioning element are arranged and designed such that in the operating position of the guiding elements the first and the second positioning element are engaged. This engagement has the effect that an additional force is required to move the guiding elements out of their operating position so that a particularly safe and reliable orientation of the guiding elements in the operating position is guaranteed.
It is particularly advantageous when the second module and the third module form a module unit and when the first module is movable relative to the module unit in at least one direction and/or the module unit is movable relative to the first module in at least one direction. The second module and the third module thus form an assembly referred to as module unit and during normal use or normal operation of the device they are handled jointly and in particular are not separated. Upon a relative movement between the first module and the module unit at least a portion of the first guiding element and/or a portion of the second guiding element are rotated about their respective axis of rotation by the contact with the first module such that the guiding elements at least temporarily contact a surface of the first module facing the module unit. As a result, the first module and the module unit can be moved relative to each other without a free space having to be provided for this within the first module so that upon a movement of the first module and the module unit relative to each other the guiding elements do not get caught and thus prevent the relative movement. Further, the first module can be assembled and disassembled easily so that the transport mechanism of the first module is easily accessible for maintenance work, in particular for removing banknote jams.
Further, it is advantageous when a force is exerted at least temporarily on the first and/or the second guiding element upon a relative movement between the first module and the module unit, said force acting against the holding force of the elastically deformable element, against the magnetic attractive force and against the holding force developed by the engagement of the positioning elements. As a result, a reliable positioning and orientation of the guiding elements in the operating state is guaranteed.
In an advantageous embodiment, the third module further includes a third guiding element and a fourth guiding element. In the operating state, at least a portion of the first guiding element and at least a portion of the second guiding element project into the first module, and at least a portion of the third guiding element and at least a portion of the fourth guiding element project into the second module. In the operating state, the first guiding element, the second guiding element, the third guiding element and the fourth guiding element are oriented in the operating position. Thus, the reliability of the guidance of the notes of value during the transport between the modules is increased.
It is particularly advantageous when the third guiding element is arranged so as to be rotatable about a third axis of rotation coinciding with its longitudinal axis and when the fourth guiding element is arranged so as to be rotatable about a fourth axis of rotation coinciding with its longitudinal axis. In this way, it is achieved that also the third guiding element and the fourth guiding element can be rotated about the respective axis of rotation and can be folded down when the module unit and the first module are moved relative to each other, wherein material fatigue and other material damages are prevented.
In a particularly preferred embodiment, a third elastically deformable element is provided which exerts a holding force on the third guiding element for holding the third guiding element in the operating position of the guiding elements. Further, a fourth elastically deformable element is provided which exerts a holding force on the fourth guiding element for holding the fourth guiding element in the operating position of the guiding elements. The third guiding element includes at least a third magnet and the fourth guiding element includes at least a fourth magnet or a second ferromagnetic material. The third magnet and the fourth magnet or the third magnet and the second ferromagnetic material are arranged opposite to each other at least in the operating state, an attractive force acting between the third magnet and the fourth magnet or between the third magnet and the second ferromagnetic material. In this way, it is achieved that the holding force of the third and of the fourth elastically deformable element and the magnetic attractive force of the third magnet and the fourth magnet or of the third magnet and the second ferromagnetic material act in addition to the holding force of the first and the second elastically deformable element and to the magnetic attractive force of the first magnet and the second magnet or of the first magnet and the first ferromagnetic material so that a particularly safe orientation of the guiding elements in the operating position is guaranteed.
Further, it is advantageous when the one operating state is a first operating state of the device and when a further operating state of the device is provided, in which the first module and the module unit are moved relative to each other such that no note of value can be transported from the first module into the second module and/or from the second module into the first module, wherein the first guiding element and the second guiding element automatically orient themselves in the operating position in the further operating state of the device. In this instance, automatic orientation of the guiding elements is that the guiding elements orient themselves in the operating position without any actuating elements. This reduces the error rate and saves installation space.
In a particularly advantageous embodiment, the third magnet is connected to a third lever including a third positioning element or the third lever including the third positioning element is the third magnet. Further, the fourth magnet or the ferromagnetic material is connected to a fourth lever including a fourth positioning element or the fourth lever including the fourth positioning element is made of a ferromagnetic material, or the fourth lever including the fourth positioning element is the fourth magnet. The third positioning element and the fourth positioning element are further arranged and designed such that in the operating position the third and the fourth positioning element are engaged. By engagement of the positioning elements, a holding force in addition to the magnetic attractive force and/or in addition to the holding force of the elastically deformable elements is provided so that a particular safe and reliable orientation of the guiding elements in the operating position is guaranteed.
In an alternative embodiment it is further advantageous when the first module and the third module form a module unit. The first module and the third module thus form an assembly referred to as module unit and during normal use or normal operation of the device they are handled jointly and in particular are not separated. It is particularly advantageous when the second module is movable relative to the module unit in at least one direction and/or the module unit is movable relative to the second module in at least one direction. Upon a relative movement between the second module and the module unit, at least a portion of the third guiding element and a portion of the fourth guiding element are rotated toward the module unit by the contact with the second module such that the third and the fourth guiding element at least temporarily contact a surface of the second module facing the module unit. As a result, the second module and the module unit can be moved relative to each other without a free space having to be provided for this within the second module so that upon a relative movement between the second module and the module unit the guiding elements do not get caught and thus do not prevent the relative movement. Further, the second module can easily be assembled and disassembled so that the transport mechanism of the second module is easily accessible for maintenance work, and in particular for removing banknote jams.
It is particularly advantageous when the first magnet, the second magnet, the third magnet and/or the fourth magnet are permanent magnets. This makes a particularly simple and cost-efficient structure of the device possible.
Further, it is advantageous when the first magnet, the second magnet, the third magnet and/or the fourth magnet are electromagnets. This guarantees a particularly reliable operation of the device. Further, the electromagnets can be controlled such that the electromagnets generate the attractive force only at certain points in time, in particular only in the first operating state.
It is particularly advantageous when the elastically deformable elements are springs, in particular tension springs. The springs are in particular biased so that the guiding elements are safely held in their operating position.
It is further particularly advantageous when the first guiding element is connected to a first shaft in a rotationally fixed manner, the second guiding element is connected to a second shaft in a rotationally fixed manner, the third guiding element is connected to a third shaft in a rotationally fixed manner and the fourth guiding element is connected to a fourth shaft in a rotationally fixed manner, and when the first, the second, the third and the fourth shaft include engagement elements with which connecting elements, in particular eyelets of the elastic elements engage. It is particularly advantageous when the first elastic element is a tension spring with two connecting elements, wherein the first connecting element engages with the engagement element of the first shaft and the second connecting element engages with the engagement element of the third shaft, and/or when the second elastic element is a tension spring with two connecting elements, wherein the first connecting element engages with the engagement element of the second shaft and the second connecting element engages with the engagement element of the fourth shaft. In this way, installation space can be saved. Further, in a particularly advantageous embodiment two elastic elements are sufficient to reliably hold four shafts and thus the guiding elements connected to the shafts in the operating position.
Various aspects will become apparent to those skilled in the art from the following detailed description and the accompanying drawings.
The head module 14 includes a non-illustrated input and output unit for the output of notes of value to be dispensed to a user and for the input of notes of value deposited by a user. Both the safe 12 and the head module 14 each have an opening through which notes of value can be transported from the head module 14 into the safe 12 and vice versa from the safe 12 into the head module 14. The safe 12 includes a non-illustrated transport mechanism which connects the opening of the head module 14 to the input and output unit. The transport mechanism of the safe 12 connects the cash boxes received in the safe 12 to the opening of the safe 12.
In an alternative embodiment, the device 10 may also only serve to dispense notes of value. In this case, notes of value are only feedable from the safe 12 via the opening of the safe 12 and the opening of the head module 14 to the head module 14. In a further alternative embodiment, the safe 12 and the head module 14 may also be a safe 12 and a head module 14 of an automatic cash register system or an automatic cash safe.
In the first operating state of the device 10, illustrated in
The transfer module 16 includes a first guiding element 24 and a second guiding element 26 for guiding the notes of value during the transport of banknotes from the safe 12 to the head module 14 and from the head module 14 to the safe 12. The notes of value are transported between the guiding elements 24, 26 so that the notes of value are guided on both sides by one guiding element 24, 26 each.
The first guiding element 24 includes a shaft 32 and eight guiding fingers connected to the shaft 32 in a rotationally fixed manner, one of which being exemplarily identified with the reference sign 34. The second guiding element 26 includes a shaft 50 and eight guiding fingers connected to the shaft 50 in a rotationally fixed manner, one of which being exemplarily identified with the reference sign 48. In an alternative embodiment, the guiding element 24, 26 may also include more or less than eight guiding fingers 34, 48. The guiding fingers 34, 48 of the guiding elements 24, 26 are in particular identically formed. In a further alternative embodiment, the guiding element 24, 26 may also include a continuous plate-shaped element with longitudinal ribs for guiding the banknotes instead of a plurality of guiding fingers 34, 48.
The guiding elements 24, 26 further include at least one first lever 28, 30 each. On the lever 28 a first magnet 40 and on the lever 30 a second magnet 42 is arranged. An attractive force between the two magnets 40 and 42 acts such that the guiding elements 24, 26 are held in the first operating position shown in
In the second operating state illustrated in
In a third operating state, the head module 14 no longer contacts the guiding elements 24, 26 so that these automatically move into their operating position.
At the end section of the shafts 132, 150, 232, 250 one lever 152, 154, 252, 254 each is arranged which is connectable to the shaft 132, 150, 232, 250 in a rotationally fixed manner. In the depiction according to
The shaft 132 includes at a first end a lever 190 and at a second end a lever 194, the shaft 150 includes at a first end a lever 192 and at a second end a lever 196, the shaft 232 includes at a first end a lever 290 and at a second end a lever 294, and the shaft 250 includes at a first end a lever 292 and at a second end a lever 296. The levers 190, 192, 194, 196, 290, 292, 294, 296 are arranged outside a value note transport path defined by the guiding elements 124, 126, 224, 226. In other embodiments, the levers 190, 192, 194, 196, 290, 292, 294, 296 are not arranged at the end but in an area between the end of the shafts 132, 150, 232, 250 and the guiding elements 124, 126, 224, 226.
In an alternative embodiment, the engagement elements 170, 172, 270, 272 of the tension springs 180, 182 may be directly mounted on the shaft 132, 150, 232, 250 or on the levers 190, 192, 194, 196, 290, 292, 294, 296.
A first magnet 110 is firmly connected to the lever 190, a second magnet 120 is firmly connected to the lever 192, the first magnet 110 and the second magnet 120 being arranged opposite to each other so that an attractive force between the first magnet 110 and the second magnet 120 acts and holds the guiding elements 124 and 126 in their operating position.
A third magnet 130 is firmly connected to the lever 290, a fourth magnet 140 is firmly connected to the lever 292, the third magnet 130 and the fourth magnet 140 being arranged opposite to each other so that an attractive force acts between the third magnet 130 and the fourth magnet 140 and holds the guiding elements 224 and 226 in their operating position.
The levers 194 and 196 likewise each include a magnet, which is not visible in the illustration according to
The attractive forces of the magnets 110, 120, 130, 140 act in addition to the spring forces of the springs 180, 182 so that the operating position of the guiding elements 124, 126, 224, 226 is held at least by the magnetic attractive forces and the spring forces.
The transport shaft 300 includes at a first end a gearwheel 520 and at a second end a gearwheel 522. The second transport shaft 350 has at a first end a gearwheel 524 and at a second end a second gearwheel 526. The gearwheels 520 and 526 as well as the gearwheels 522 and 524 are engaged so that the first transport shaft 300 and the second transport shaft 350 are drivable by a single drive unit (not illustrated). The drive unit can be a central drive unit of the transfer module or a higher-level drive unit, in particular a main drive unit for note transport.
The transfer module 116 further includes two sliding elements 400, 410 firmly connected to the transfer module 116 and arranged opposite to each other. Each sliding element includes twenty-four sliding fingers, four sliding fingers being exemplarily identified with the reference signs 401 to 404. The sliding fingers 401 to 404 are arranged in the spaces between the guiding fingers 134, 136, 146, 148, 234236, 246, 248. The sliding fingers 401 to 404 are in particular shorter than the guiding fingers 134, 136, 146, 148, 234, 236, 246, 248 and project neither into the head module 14 nor into the safe 12. Further, the sliding elements 400, 410 include a sliding body, the sliding body of the sliding element 410 being covered by the sliding body 405 of the sliding element 400 in the illustration according to
In a fourth, non-illustrated operating state, the head module 14 no longer contacts the guiding elements 124, 126 so that they automatically move from the position shown in
While principles and modes of operation have been explained and illustrated with regard to particular embodiments, it must be understood, however, that this may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
Number | Date | Country | Kind |
---|---|---|---|
18150151.1 | Jan 2018 | EP | regional |