This invention relates to a heating apparatus for heating parisons formed of thermoplastic material, such as used for forming beverage bottles in bottling operations.
British Patent 2 095 611 B has already disclosed such a device with which the parisons are gripped on the outside in the head area by means of holding fingers between the supporting ring and the open mouth and the shielding is formed by a cylindrical protective jacket which surrounds most of the head area including the supporting ring. Although the parison head area, which is not to be deformed, is protected from direct heating by the radiant heater due to this protective jacket, it is not protected from indirect heating by the protective jacket, which is itself heated by the radiant heaters.
British Patent 2 095 611 B has already disclosed such a device with which the parisons are gripped on the outside in the head area by means of holding fingers between the supporting ring and the open mouth, and the shielding is formed by a cylindrical protective jacket which surrounds most of the head area including the supporting ring. Although the parison head area, which is not to be deformed, is protected from direct heating by the radiant heater due to this protective jacket, it is not protected from indirect heating by the protective jacket, which is itself heated by the radiant heaters.
The object of this invention is to improve upon the protection of the head area of parisons, which is not to be deformed, to protect it from unwanted heating in the case of a generic device.
In the case of a device according to this invention, the head area of the parisons is protected by the cover plates from direct heating due to the radiant heaters. In addition, indirect heating via the closed protective sleeves (not included) is prevented, and instead an active cooling of the head and thread areas is implemented. Because of the continuous shielding by the cover plates, which form a type of strip, this makes it possible to heat the area of the parisons, which is to be heated especially rapidly and in an energy saving manner in a closed heating channel, and to do so while the parisons are in the normal upright position.
An exemplary embodiment of the present invention is described below on the basis of drawings, which show:
The device 1 according to
The parisons 2, which are closed at the bottom, have a supporting ring 3 in their upper area, and the head 5, which is located between the open mouth 4 and the supporting ring 3, has an external thread and is already in its final form. The head 5 is not involved in the stretch blow molding operation and therefore must not be heated in any case to a temperature close to the processing temperature in order to avoid unwanted deformation.
The device 1 has a continuous conveyor chain 12 having a plurality of chain links 12a of the same type which are joined together by pins in an articulated manner and have laterally protruding projections 12b, which revolve in a horizontal plane over a driving wheel 16 and a deflecting wheel 17. Between the driving wheel 16 and the deflecting wheel 17, there are two parallel linear revolving regions, which move around the wheels and in which the chain links 12a are guided precisely by means of stationary rails 19 and rollers 18, which are mounted on the chain links so they can rotate.
In at least one of the two linear revolving regions, a plurality of similar stationary heating boxes 7 are situated on the path of movement of the parisons 2, which are carried by the conveyor chain 12, each box being equipped with a plurality of horizontally aligned tubular infrared lamps 36.
A sleeve 20 having a vertical rotational axle is mounted in each projection 12b of the conveyor chain 12 and is connected in a rotationally fixed manner to a toothed wheel 21; it engages with a stationary toothed rack or a continuously revolving roller chain 21 and sets the sleeve 20 in continuous rotation when the conveyor chain 12 is rotating continuously. A holding mandrel 6 is accommodated in each sleeve 20 in a rotationally fixed manner but with an adjustable height. The holding mandrel projects out of the bottom side of the sleeve 20 and is rigidly connected to a control rod 22 which projects at the upper end of the sleeve 20. A compression spring 23 which presses the holding mandrel 6 into its upper end position shown in
On the lower side of each projection 12b of the conveyor chain 12, a horizontal cover plate 8 having a square periphery is attached at a distance by means of four thin perpendicular rods 11. The cover plate 8 consists of an essentially flat piece of sheet metal several millimeters thick or a profiled molded part, and it has a central borehole 9, which is concentric with the sleeve 20 and the holding mandrel 6. The diameter of the borehole 9 is slightly greater than the outside diameter of the supporting ring 3. The height and thickness of the cover plates 8 are selected so that the supporting ring 3 of a parison 1 is situated centrally in the borehole 9 at a slight distance of 2 to 3 mm, for example, from the bottom side of the cover plate, and most of the head 5 projects above the top side of the cover plate 8 and is thus freely accessible from practically all sides between the four rods when the holding mandrel 6 with the parison 2 placed on it assumes its upper end position (see
The heating boxes 7, which are arranged in a line on the outside of the linear peripheral area of the conveyor chain 12, form a linear heating channel K together with plate-shaped ceramic reflectors 35, which are arranged in a line on the inside of the linear revolving area, and a ceramic base plate 26; the parisons 2, which are conveyed in the normal upright position, project from above with their body area 24 which is to be shaped, into the linear heating channel. The heating channel K is closed at the upper end by the cover plates 8, which come in contact with one another or are opposite one another at a slight distance and form a revolving belt of cover plates in combination with a linear cooling shield 27 through which water flows on the side of the heating boxes 7 and a baffle plate 28 on the side of reflectors 25. The linear edges of the cooling shield 27 and the baffle plate 28, which point toward one another and run parallel to one another are arranged at a small distance from the cover plates 8 or they come in contact with the latter. Due to the design of a heating channel K, which is closed on all sides, this permits an extremely effective and energy-saving heating for the body area 26, which is to be shaped beneath, the supporting ring 3 of the parisons 2. To prevent overheating of the surface of the parisons 2, narrow slotted nozzles 29 are provided between the heating boxes 7 with fans 30 connected to them, to blow room air in a high concentration onto the surfaces of the parisons 2 as they revolve past them. Furthermore, a cooling fan 31 is connected to the outside of each heating box 7 to cool the infrared lamps 36. The air which is introduced by the fans 30 and 31 into the heating channel K at an excess pressure is removed through perpendicular slot-shaped orifices 37 provided between the individual reflectors 25. These orifices 37 are either positioned in a single inclination relative to the direction of emission of the infrared lamps 36, as shown in
The cover plates according to this invention can be used in the same way with parisons in which the supporting ring is not formed on a projecting neck collar, but instead on a recessed ring groove, especially shaped transition between the head and the body, etc. It is important only that the cover plate be arranged at the dividing point between the area of the parison to be shaped further and that which is not to be shaped further.
If the parisons are heated in the normal upright position, as shown in this embodiment, the cover plates according to this invention also prevent heating of the head area due to hot air ascending out of the heating channel. The parisons can therefore be heated with no problem in a normal position without first rotating them by 180°.
Number | Date | Country | Kind |
---|---|---|---|
101 45 456 | Sep 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/09995 | 9/6/2002 | WO | 00 | 4/2/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/024693 | 3/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4420670 | Croswell et al. | Dec 1983 | A |
4571173 | Chang et al. | Feb 1986 | A |
4606723 | Pasternicki | Aug 1986 | A |
5066222 | Roos et al. | Nov 1991 | A |
5282526 | Gibbemeyer | Feb 1994 | A |
5620715 | Hart et al. | Apr 1997 | A |
5869110 | Ogihara | Feb 1999 | A |
6109907 | Takada et al. | Aug 2000 | A |
Number | Date | Country |
---|---|---|
3908345 | Jan 1991 | DE |
29916315 | Jul 2000 | DE |
1095756 | May 2001 | EP |
2095611 | Oct 1982 | GB |
WO 0134369 | May 2001 | WO |
WO 0149075 | Jul 2001 | WO |
WO 03024693 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040161486 A1 | Aug 2004 | US |