Claims
- 1. In a device for providing an improved electrical contact between an electrical conductor and an electrode member, said electrode member having an electrically conductive electrode carrier element mounted in an insulating housing for movement relative thereto, wherein the improvement comprises control means for controlling the rotation of the electrode member, a fixed position nut-forming element made of electrically conductive material interposed in electrical conductive relation between said electrical conductor and said electrode member for establishing permanent electrical contact therebetween, said nut-forming element defining an axial bore through which said electrode member passes and rotates; means for electrically connecting said electrical conductor to said nut-forming element; and means for effecting axial movement of said electrode member in said bore and relative to said insulating housing upon rotation of said electrode member by said control means.
- 2. A device according to claim 1, wherein said means for electrically connecting the electrical conductor to the nut-forming element comprises an electrically conductive tab imbedded in said insulating housing.
- 3. A device according to claim 1, wherein the nut-forming element comprises two complementary half-disks, and means for joining said half-disks together for defining said axial bore.
- 4. A device according to claim 3, wherein said means for joining said half-disks together comprises each half-disk having at least a first circumferential slot, said slots in said first and second half-disks being aligned when the half-disks are joined for defining said axial bore, and a first centering plate dimensioned for seating in said aligned slots, and means for securing said plate to one of said half-disks when said plate is seated in said aligned slots.
- 5. A device according to claim 4, wherein said means for joining said half-disks together further comprises each of said first and second half-disks having second circumferential slot, said second slots also being aligned when said half-disks are assembled for defining said axial bore, and further comprising a second centering plate dimensioned for seating in said aligned second slots and means for securing said second plate to at least one of said half-disks when said second plate is seated in said aligned second slots, whereby said centering plates are fixed symmetrically about the axis of the nut-forming element.
- 6. A device according to claim 4, wherein both centering plates are in the form of a truncated sector of a disk.
- 7. A device according to claim 3, wherein the nut-forming element has an annular groove on the outside thereof, and further comprising resilient means received in said groove for urging the two half-disks together.
- 8. A device according to claim 1, wherein said means for effecting axial movement comprises, said axial bore being internally threaded, said electrode member being adapted to move axially in said bore over a defined distance and including a corresponding externally threaded portion of sufficient axial length for mating with said internal thread of said axial bore as said electrode member moves over said defined distance, said mating of said externally threaded portion of said electrode member with said internally threaded bore of said nut-forming element effecting axial movement of the electrode member upon rotation.
- 9. A device according to claim 8, wherein said means for effecting axial movement further comprises means for rotating said electrode member.
- 10. A device according to claim 1, wherein said nut-forming element comprises a portion of said means for effecting axial movement of said electrode member.
- 11. In a device for use in an apparatus of the type comprising an electrode member connected to an electrical current supply by an electrical conductor; said apparatus further including control means for rotating said electrode member, said device providing improved electrical contact between said electrical conductor and said electrode member, said electrode member being mounted in an insulating housing for axial movement relative thereto, wherein the improvement comprises a nut-forming element made of electrically conductive material fixedly mounted to said insulating housing and interposed in electrical conducting relation between said electrical conductor and said electrode member for establishing permanent electrical contact therebetween, said nut-forming element defining an internally threaded axial bore through which said electrode member passes and rotates; and means for electrically connecting said electrical conductor to said nut-forming element, said electrode member being movable axially in said bore over a defined distance and including a corresponding externally threaded portion of sufficient axial length for mating with said internal thread of said axial bore as said electrode member moves over said defined distance, axial movement of said electrode member being effected upon rotation of said electrode member by said control means as a consequence of said mating of said externally threaded portion of said electrode member with said internally threaded bore of said fixedly mounted nut-forming element.
- 12. In an apparatus for generating shock waves or high frequency pulses, the apparatus being of the type which focuses said shock waves or pulses on a target and includes an insulating housing for movement relative thereto, a pair of spaced apart electrode members and a high voltage source for supplying a high voltage electrical current to said pair of spaced apart electrode members for generating an electrical arc through electrical discharge therebetween, and an electrical contact connecting said high voltage source to one of said electrode members, thus generating said shock waves or pulses, with at least one of said two electrode members being mounted for movement relative to the other, wherein the improvement comprises means for providing improved electrical contact between said electrical conductor connected to said high voltage source and one of said electrode members, said means comprising a nut-forming element made of electrically conductive material fixedly mounted to said insulating housing and interposed in electrical conducting relation between said electrical conductor and said electrode member for establishing permanent electrical contact therebetween, said nut-forming element defining an axial bore through which said electrode member passes and rotates; means for electrically connecting said electrical conductor to said nut-forming element, and means for effecting axial movement of said electrode member in said bore and relative to said insulating housing upon rotation of said electrode member.
- 13. The apparatus of claim 12, wherein said apparatus for focusing said shock waves or pulses on a target comprises a truncated elliptical reflector having an inner focus where the electrical arc is generated, and wherein a target coincides with a second focal point of said elliptical reflector located outside said truncated elliptical reflector.
- 14. A device according to claim 12, wherein said means for electrically connecting comprises an electrically conductive connecting tab embedded in the insulating housing and joined to said nut-forming element, said tab connecting said electrical conductor to said nut-forming element.
- 15. A device according to claim 12, wherein the nut-forming element comprises two complementary half-disks, and means for joining said half-disks together for defining said axial bore.
- 16. A device according to claim 15, wherein said means for joining said half-disks together comprises each half-disk having at least a first circumferential slot, said slots in said first and second half-disks being aligned when the half-disks are joined for defining said axial bore, and a first centering plate dimensioned for seating in said aligned slots, and means for securing said plate to one of said half-disks when said plate is seated in said aligned slots.
- 17. A device according to claim 16, wherein said means for joining said half-disks together further comprises each of said first and second half-disks having second circumferential slot, said second slots also being aligned when said half-disks are assembled for defining said axial bore, and further comprising a second centering plate dimensioned for seating in said aligned second slots and means for securing said second plate to at least one of said half-disks when said second plate is seated in said aligned second slots, whereby said centering plates are fixed symmetrically about the axis of the nut-forming element.
- 18. A device according to claim 16, wherein both centering plates are in the form of a truncated sector of a disk.
- 19. A device according to claim 15, wherein the nut-forming element has an outer annular groove on the outside thereof, and further comprising resilient means received in said groove for urging the two half-disks together.
- 20. A device according to claim 12, wherein said tab is fixedly mounted in said insulating support and said nut-forming element is connected to said tab and comprises part of said means for affecting axial movement.
- 21. A device according to claim 20, wherein said means for effecting axial movement comprises, said axial bore being internally threaded, said electrode member being movable axially in said bore over a defined distance, said electrode member including a corresponding externally threaded portion of sufficient axial length for mating with said internal thread of said axial bore as said electrode member moves over said defined distance, said mating of said externally threaded portion of said electrode member with said internally threaded bore of said nut-forming element effecting axial movement of the electrode member upon rotation.
- 22. A device according to claim 21, wherein said means for effecting axial movement further comprises means for rotating said electrode member.
- 23. A device according to claim 12, wherein said nut-forming element comprises a portion of said means for effecting axial movement of said electrode member.
- 24. In a device for providing an improved electrical contact between an electrical conductor and an electrode member, said electrode member having an electrically conductive electrode-carrier element mounted in an insulating housing for movement relative thereto, wherein the improvement comprises control means for rotating the electrode member; a fixed position nut-forming element made of electrically conductive material fixedly mounted to said insulating housing and interposed in electrical conductive relation between said electrical conductor and said electrode member for establishing permanent electrical contact therebetween, said nut-forming element defining an axial bore through which said electrode member passes and rotates, said nut-forming element and said electrode member having cooperating means mating with one another for effecting axial movement of said electrode member in said bore and relative to said insulating housing upon rotation of said electrode member by said control means; and means for electrically connecting said electrical conductor to said nut-forming element.
Priority Claims (1)
Number |
Date |
Country |
Kind |
8701083 |
Jan 1987 |
FRX |
|
Parent Case Info
This is a continuation of U.S. application Ser. No. 07/148,159 filed Jan. 26, 1988 now abandoned.
US Referenced Citations (7)
Foreign Referenced Citations (4)
Number |
Date |
Country |
0124686 |
Aug 1984 |
EPX |
0674147 |
Jan 1930 |
FRX |
2247195 |
Sep 1975 |
FRX |
0647157 |
Dec 1950 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
148759 |
Jan 1988 |
|