This application is a 35 U.S.C. § 371 National Stage Application of PCT/IB2013/000212, filed on Jan. 17, 2013, which claims the benefit of priority to Ser. No. A 105/2012, filed on Jan. 26, 2012 in Austria, the disclosures of which are incorporated herein by reference in their entirety.
The disclosure relates to a device for injecting fuel into the combustion chamber of an internal combustion engine, having at least one injector, which has a high-pressure accumulator integrated into the injector body, an injection nozzle that has a nozzle needle which is guided in an axially movable manner and which is surrounded by a nozzle chamber, a high-pressure bore connecting the high-pressure accumulator and the nozzle chamber, and a feed bore for feeding high-pressure fuel to the high-pressure accumulator, wherein the feed bore has a lance connection arranged laterally on the injector body.
Injectors of this kind are used in modular common rail systems, which are characterized in that some of the reservoir volume present in the system is present in the injector itself. Modular common rail systems are used on particularly large engines, on which the individual injectors may under certain circumstances be fitted at considerable spacings. On such engines, using just a single rail for all the injectors is not expedient since there would be a massive dip in the injection pressure during injection owing to the long lines, with the result that there would be a significant drop in the injection rate in the case of a relatively long injection duration. On such engines, provision is therefore made to arrange a high-pressure accumulator within each injector. Such a design is referred to as a modular construction since each individual injector has a dedicated high-pressure accumulator and can thus be used as a self-contained module. Here, a high-pressure accumulator is not intended to mean a conventional line but is a pressure resistant vessel having an inlet and an outlet line, the diameter of which is significantly enlarged as compared with the high-pressure lines to enable a certain injection quantity to be dispensed from the high-pressure accumulator without an immediate pressure drop.
Injectors of modular common rail systems are fed with high-pressure fuel from a high-pressure pump, wherein the feed is accomplished either via a high-pressure connection of the injector on the top side of the high-pressure accumulator (“top feed”) or via a lance which makes lateral contact with the injector (“side feed”). In the case of the side feed, the lance opens via a lance connection of the injector into a feed bore, which opens into the high-pressure bore connecting the high-pressure accumulator to the nozzle pre-chamber. Fundamentally, the side feed has a number of advantages, especially in the case of large engines, since it allows the path of the fuel to the injector to be routed transversely through the cylinder, thereby generally making it possible to shorten the length of the feed as compared with a top feed. However, the conventional type of side feed is associated with the disadvantage that the high-pressure fuel flows directly from the lance connection to the injection nozzle during injection, leading to inadequate exchange of fuel in the high-pressure accumulator. However, exchange of the fuel is important to prevent deposits or the formation of residues. There is a risk of deposits or residues particularly with the use of high viscosity fuels, e.g. heavy oil in large diesel engines. Another disadvantage of the design described above involving side feed is that the outlet location of the feed bore into the high-pressure bore, which is usually embodied in the form of a T joint, is disadvantageous in terms of strength.
The disclosure therefore aims to avoid the abovementioned disadvantages, especially the formation of deposits and residues in the high-pressure accumulator of a modular common rail injector.
To achieve this object, starting from a device of the type stated at the outset, the disclosure essentially envisages that the feed bore is designed as a bore which is separate from the high-pressure bore and connects the lance connection directly to the high-pressure accumulator. This ensures that the entire quantity of fuel fed to the injector is passed through the high-pressure accumulator, thus enabling sufficient exchange of the fuel in the high-pressure accumulator to take place. This routing of the fuel furthermore promotes the formation of turbulence, thereby ensuring better removal of air from the high-pressure accumulator.
A particularly preferred design envisages that the lance connection is formed on a holding body, which is connected, in particular screwed, at the end to the accumulator tube forming the high-pressure accumulator.
In a common rail system, electronically controlled injectors are used to inject fuel into the combustion chamber of the engine. The servo valves used in said injectors bring about very rapid closure of the injection nozzle. During the closure of the injection nozzle, the fuel runs against a closed end of the line and, owing to the inertia of the fuel, the pressure ahead of the injection nozzle rises significantly. This pressure peak consequently travels backward and forward in the high-pressure bore between the injection nozzle and the high-pressure accumulator, giving rise to powerful pressure pulsations at the nozzle seat and leading to severe wear here. In unfavorable cases, the pressure peaks which occur in this process are up to 500 bar above the rail pressure.
In the case of a rapid succession of injection processes, these pressure oscillations furthermore lead to severe fluctuations in the injection rate. If, for example, a pressure oscillation is induced at the nozzle seat by a pilot injection, the quantity injected in the second, subsequent injection with a constant opening time of the nozzle needle depends on whether the second injection has taken place more at a maximum or at a minimum of the pressure oscillations. As little pressure oscillation as possible at the injection nozzle in all operating states of the hydraulic system is therefore desirable.
One possibility for reducing pressure pulsations can be found in WO 2007/143768 A1, wherein a resonator line arranged in parallel with the high-pressure line between the injection nozzle and the high-pressure accumulator is provided, said resonator line having a resonator restrictor on the high-pressure accumulator side. The resonator restrictor is preferably arranged at the inlet of the resonator line leading into the high-pressure accumulator. The design known from WO 2007/143768 A1 thus envisages that the high-pressure line should be divided into two mutually independent regions, one of which is fitted with a restrictor, ensuring that the pressure oscillations which arise at the nozzle seat are reflected differently in the two regions and the reflected oscillations almost cancel each other out by virtue of their phase difference. This manner of reducing pressure pulses does not work in an optimum manner with a conventional fuel feed by means of side feed since, in this case, the lateral fuel feed opens into the high-pressure bore, and reflections and superpositions of pressure waves occur at the entry point, interfering with the extinction of pressure waves intended with the resonator system described. With the design according to the disclosure, in which the fuel is fed directly into the high-pressure accumulator from the lance connection, the interfering effect of the entry point is eliminated, allowing the resonator system to reduce the pressure pulses in a considerably more effective manner.
The design according to the disclosure plays a particularly advantageous role in injectors in which, in order to control the opening and closing movement of the nozzle needle, said needle can be acted upon in an axial direction by the pressure prevailing in a control space that can be fed with fuel under pressure, wherein the control space is connected to a feed channel having a feed restrictor and to a drain channel having a drain restrictor, and at least one control valve that opens or closes the feed or drain channel is provided, by means of which the pressure in the control space can be controlled.
The disclosure is explained in greater detail below by means of an illustrative embodiment shown schematically in the drawings. In said drawings:
As soon as the solenoid valve 13 is closed, the drain path of the fuel through the drain restrictor 12 is blocked. Fuel pressure is built up again in the control space 11 via the feed restrictor 10, generating an additional closing force which reduces the hydraulic force on the pressure shoulder of the nozzle needle 15 and exceeds the force of the nozzle spring 14. The nozzle needle 15 closes the path to the injection openings 17, and the injection process is ended.
Owing to the inertia of the fuel in the accumulator 6, the high-pressure line 8 and the nozzle space 19, there are severe pressure oscillations that the nozzle seat 16 directly after the closure of the nozzle needle 15 since the flowing fuel has to be slowed down in a very short time. To reduce the pressure oscillations, use is made of a resonator. This consists of a resonator line 20, which has the same length and the same diameter as the high-pressure line 8, and of a resonator restrictor 21, which is fitted at the accumulator end of the resonator line 20 and connects said line to the accumulator 6. When the solenoid valve 13 is closed, the pressure pulse which arises at the nozzle seat 16 propagates via the nozzle space 19 into the high-pressure line 8 and the resonator line 20. At the end of the high-pressure line 8, the pressure pulse is reflected at the open end at the transition to the accumulator 6. At the same time, the pressure pulse traveling in the resonator line 20 is reflected at the resonator restrictor 21 at the closed end. Owing to the different type of reflection (open or closed end), there is a phase difference of 180° between the two reflected pressure pulses, with the result that they cancel each other out when they meet in the nozzle space 19. As a result, there are no further pressure pulses at the nozzle seat 16, and therefore significantly less wear occurs here.
In the prior art embodiment shown in
Number | Date | Country | Kind |
---|---|---|---|
A105/2012 | Jan 2012 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2013/000212 | 1/17/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/111008 | 8/1/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3187733 | Heintz | Jun 1965 | A |
4662315 | Sommer | May 1987 | A |
5012786 | Voss | May 1991 | A |
20040187848 | Hlousek | Sep 2004 | A1 |
20080296413 | Ganser | Dec 2008 | A1 |
20100263626 | Kammerstetter | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
509 877 | Dec 2011 | AT |
10 2006 027 614 | Dec 2007 | DE |
1 612 405 | Jan 2006 | EP |
2000-205081 | Jul 2000 | JP |
2000205081 | Jul 2000 | JP |
03076794 | Sep 2003 | WO |
2007143768 | Dec 2007 | WO |
Entry |
---|
International Search Report corresponding to PCT Application No. PCT/IB2013/000212, dated May 15, 2013 (German and English language document) (7 pages). |
Number | Date | Country | |
---|---|---|---|
20140345569 A1 | Nov 2014 | US |