The disclosure relates generally to fiber optics and more particularly to a camera device having an optical fiber guide, which may be used to inspect a cleave of an optical fiber endface.
Optical fibers can be used to transmit or process light in a variety of applications. Benefits of optical fiber include extremely wide bandwidth and low noise operation. Because of these advantages, optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. Fiber optic networks employing optical fiber are being developed and used to deliver voice, video, and data transmissions to subscribers over both private and public networks. These fiber optic networks often include separated connection points linking optical fibers to provide “live fiber” from one connection point to another connection point. In this regard, fiber optic equipment is located in data distribution centers or central offices to support interconnections.
Optical communication networks involve termination preparations to establish connections between disparate optical fibers. For example, optical fibers can be spliced together to establish an optical connection. Optical fibers can also be connectorized with fiber optic connectors that can be plugged together to establish an optical connection. In either case, it may be necessary for a technician to establish the optical connection in the field. The technician cleaves the optical fiber to prepare an end face on the optical fiber. The technician may employ a cleaver that includes a blade to score, scribe, or otherwise induce a flaw in the glass of the optical fiber. Inducing a flaw in the glass of an optical fiber precedes breaking the glass at the flaw to produce an end face. The blade may either be pressed into the glass or swiped across the glass to induce the flaw. The end face can then either be spliced to another optical fiber or connectorized with a fiber optic connector to establish an optical connection.
Optical fiber polish and cleave quality plays a crucial part in fiber connection loss. For example, the mode field diameter can be as small as 10 μm for single mode fibers. Scratches, dust particles, cracks, or irregularities in the fiber surface can strongly attenuate optical coupling and reduce long term reliability. As such, end face inspection of optical connectors and cleaved fibers by microscopy has been an important quality control method in fiber optics industry. Such equipment is widely used in manufacturing settings, laboratories, and increasingly in the field, with field-installable connectors typically requiring polishing or mechanical cleave in the field. End face inspection can improve the yield by verifying the quality of polish and cleave.
No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.
Embodiments include a fiber inspection device for inspecting a cleave of an optical fiber endface. The device may also be configured to inspect a polish of the optical fiber using the same imaging hardware and/or software. The device may be a portable device and can be configured to be removably attached to a camera, such as a portable camera or smartphone, or may be configured to include an integrated camera. One advantage of inspecting a cleave of the optical fiber endface is to verify that the endface has a flat, uniform surface, independent of polish quality. Just as it is important to attain a smooth uniform polish of the optical fiber endface, it is equally important that the initial cleave generate a flat and uniform surface. If an adequate cleave is not attained, signal attenuation may occur, even if the polish of the endface is of otherwise high quality. Thus, by enabling cleave inspection both in the field and lab settings, overall quality control can be increased.
One embodiment of the disclosure relates to a fiber inspection device for inspecting a cleave of an optical fiber. The fiber inspection device comprises an optical fiber guide configured to guide and maintain the end portion of the first optical fiber. The fiber inspection device further comprises a beam splitter, comprising a first inspection optical interface having a first inspection optical interface configured to receive and direct light returned from an end portion of a first optical fiber in a first optical path. The beam splitter further comprises at least one optical splitter disposed in the first optical path configured to direct returned light returned from the optical fiber guide via the first inspection optical interface to an inspection optical output in a second optical path. The fiber inspection device further comprises a camera having at least one optical input disposed in the second optical path such that the camera is configured to image the returned light returned from the optical fiber guide.
In another exemplary embodiment, a method of inspecting optical fiber is disclosed. The method comprises providing a camera having an optical input and a fiber inspection device removably attached to the camera. The method further comprises disposing an end portion of a first optical fiber proximate to an optical fiber guide of the fiber inspection device. The method further comprises receiving light returned from the optical fiber guide at the optical input of the camera via a first inspection optical interface of a beam splitter. The beam splitter is further configured to direct returned light returned in a first optical path from the optical fiber guide via a second inspection optical interface to an inspection optical output in a second optical path, to be imaged by the camera.
In another exemplary embodiment, an optical fiber inspection system is disclosed. The system comprises a camera having an optical input and a camera body, and a fiber inspection device removably attached to the camera for inspecting an optical fiber. The fiber inspection device comprises an optical fiber guide configured to guide and maintain an end portion of an optical fiber. The fiber inspection device further comprises a beam splitter comprising a first inspection optical interface configured to receive and direct light returned from the end portion of the optical fiber in a first optical path. The beam splitter further comprises at least one optical splitter disposed in the first optical path configured to direct returned light returned from the optical fiber guide via the first inspection optical interface to an inspection optical output, to be imaged by the camera.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.
The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments. Persons skilled in the art will appreciate how features and attributes associated with embodiments shown in one of the drawings may be applied to embodiments shown in others of the drawings.
Embodiments include a fiber inspection device for inspecting a cleave of an optical fiber endface. The device may also be configured to inspect a polish of the optical fiber using the same imaging hardware and/or software. The device may be a portable device and can be configured to be removably attached to a camera, such as a portable camera or smartphone, or may be configured to include an integrated camera. One advantage of inspecting a cleave of the optical fiber endface is to verify that the endface has a flat, uniform surface, independent of polish quality. Just as it is important to attain a smooth uniform polish of the optical fiber endface, it is equally important that the initial cleave generate a flat and uniform surface. If an adequate cleave is not attained, signal attenuation may occur, even if the polish of the endface is of otherwise high quality. Thus, by enabling cleave inspection both in the field and lab settings, overall quality control can be increased.
Various embodiments will be further clarified by the following examples. Before discussing the embodiments in detail, reference will now be made to examples of conventional fiber inspection tools and methods. In this regard,
Other devices designed, for example for medical diagnostics, contain components sufficient to perform optical microscopy and fluorescence microscopy, but existing devices are also bulky, and are expensive due to the highly specialized nature of the devices. Accordingly, there is a need for a compact, ergonomic, and easy to use fiber inspection device that leverages the existence of existing portable camera technology, and that has capabilities for advanced functions such as interferometric and other measurements. Such a device may include an integrated camera, or may be configured to be removably attached to an existing portable camera, such as a smartphone or other relatively low cost camera device. For example, because smartphones are manufactured in high volumes, the cost of the camera components may be of sufficient quality for microscopy at a significantly reduced price over customized solutions. Thus, by leveraging the existing camera lens focus and sensor technology to permit inspection of an endface of an optical fiber, field inspection of bare optical fiber becomes easier and more economical.
In this regard,
The fiber inspection device 24 of
In this embodiment, the fiber inspection device 24 is removably attached to the back surface 26 of smartphone 22. As shown in
One advantage of this and other embodiments is that the fiber inspection device 24 can be made compact and ergonomic. Because the fiber inspection device 24 employs micro optics and does not require electronic components, the size and weight of the fiber inspection device 24 can be significantly reduced. In addition, an existing smartphone design and interface can be used, making the fiber inspection device 24 ergonomic and easy to use in both a lab and field settings.
Another advantage of the fiber inspection device 24 is the relatively low cost compared to a fully integrated solution. The fiber inspection device 24 leverages the built in camera, computing power and user interface of smartphone 22 or other mobile computing device. Because the inexpensive, mass produced imaging hardware and software already exists as part of these mobile computing devices, a simple add-on solution such as fiber inspection device 24 can be produced without the need to develop dedicated electronics hardware or embedded software.
As will be discussed below as well, the fiber inspection device 24 also allows for unique functionalities, such as interferometric imaging capability. By integrating interferometric imaging into the low-cost fiber inspection device 24, connector end face geometry measurement can be achieved in a very low cost platform.
In this regard,
The camera functionality of smartphone 22(1) includes a lens 44(1) and an image sensor 46(1), which is operably connected to processing components 48(1), which may include, for example, a processor, memory, storage, and other computing components. The adapter ferrule 28(1) includes a microhole 50(1) configured to receive an end of optical fiber 20(1) such that endface 51(1) of optical fiber 20(1) is positioned against a first optical input 52(1) of the fiber inspection device 24(1). In this example, to maintain a small form factor, a GRIN lens 54(1) (or other micro-objective) is disposed at the first optical input 52(1) such that light is channeled and directed along a first optical axis 56(1) between the first optical input 52(1) and a beam splitter 58(1), which is connected to the GRIN lens 54(1) at a first optical interface 60(1). In this embodiment, the first optical input 52(1) can include a convex surface such as a lens 55(1). Lens 55(1) can be integrated into the GRIN lens 54(1) or can be a separate component.
The end face 51(1) of optical fiber 20(1) is brought to close proximity or direct contact with the first optical input 52(1) of GRIN lens 54(1). The surface of the first optical input 52(1) is scratch resistant when contact measurement is required. The focal length of the GRIN lens 54(1) is similar to or smaller than that of the camera lens 44(1) in order to achieve high spatial resolution. Light returned from the endface 51(1) of optical fiber 20(1) is directed along the first optical axis 56(1) into beam splitter 58(1) and is reflected by optical splitter 62(1) to a second optical interface 64(1) along a second optical axis 66(1) toward camera input 42(1). An aperture stop 68(1) is disposed over the camera input 42(1), for example to prevent light directed into the camera input 42(1) via aperture 70(1), and to also prevent ambient light from interfering with the light returned from endface 51(1). The aperture stop 68(1) is also used to control the numerical aperture of the imaging system.
In this example, the endface 51(1) of optical fiber 20(1) can be illuminated by integrated light sources 71(1). Light sources 71(1) may be light emitting diodes (LEDs) or other suitable light producing element. Alternatively, this embodiment is also configured to illuminate the endface 51(1) using ambient light which is directed into the beam splitter 58(1) along a third optical axis 72(1) via a third optical interface 73(1). In this example, ambient light is received through lens 74(1), which directs the ambient light to a beam bender 76(1) along a fourth optical axis 78(1). The beam bender 76(1) reflects the ambient light along the third optical axis 72(1), which is coaxial with second optical axis 56(1). The ambient light is reflected off of the endface 51(1) of optical fiber 20(1) back towards beam splitter 58(1). In this example, the first and fourth optical axes 66(1), 78(1) are parallel to each other and are perpendicular to second and third optical axes 56(1), 72(1). This permits a slim form factor, for example, by allowing the adaptor ferrule 28(1) to be disposed parallel to the length of the smartphone 22(1). This arrangement also allows ambient light to enter lens 74(1) at a surface directed away from the smartphone 22(1), thereby permitting a maximum amount of ambient light to enter the lens 74(1). In an alternative embodiment, the beam bender 76(1) and lens 74(1) could be oriented toward the smartphone 22(1), for example to align with a flash LED or other LED (not shown) of the smartphone 22(1).
In this example, an optional band pass filter 80(1) may also be disposed in front of lens 74(1) in order to normalize and regulate the amount and wavelengths of ambient light entering the lens 74(1). For example, because a GRIN lens as micro objective is not necessarily achromatic, a band pass filter 80(1) may be desirable to maintain a bandwidth of illumination light source in a preferred range narrower than 20 nm. As noted above, the ambient light source can be a single color LED, ambient light or white light LED, and may be integrated into the fiber inspection device 24(1) or smartphone 22(1).
In addition to inspecting an endface 51 of an optical fiber 20 directly, for example to inspect a polish of the endface 51, it may also be desirable to inspect a cleave of the endface 51 of the optical fiber. In this regard,
As with the embodiment described in
In another example, the polish inspection and cleave inspection functions may be integrated into a single fiber inspection device. In this regard,
In the above examples, the inspection devices 24 are configured to inspect the endfaces 51 of bare optical fibers 20. In other embodiments, however, it may be desirable to inspect an endface of an optical fiber disposed in a pre-assembled fiber optic connector. In this regard,
In one example, the smartphone 22 may be a consumer phone, such as an Apple® iPhone 4S™. The back camera of an exemplary Apple® iPhone 4S™ has an effective focal length of 4.28 mm and an F number of 2.4. The image sensor 46 has 3264×2448 pixels, and the size of each pixel is 1.4 μm. A quarter pitch GRIN lens 54, 84 (Edmund Optics, NT 64-519) with effective focal length of 1.69 mm at 670 nm and an outer diameter of 1.8 mm is suitable for use in this embodiment. The beam splitter 58 may be a 5 mm3 cube beam splitter. Thus, the size of the fiber inspection device 24 is significantly smaller than conventional inspection devices.
It should be understood, however, that mobile devices described herein may be smartphones, tablets, iPods®, phablets, laptops, or other mobile computing devices having integrated cameras. The same fiber inspection device 24 can be used for different devices by using modular attachment components, which connect the smartphone 22 and the fiber inspection device 24.
The inspection devices described herein may operate with the built in software applications (apps) of the smartphone 22 for zooming, autofocusing and saving of the fiber end face images. Apps may also be developed to provide custom functions such as contrast enhancement, dust recognition, and geometry measurements. The smartphone 22 can be used to store, transfer, manage, and analyze the images taken by the camera. For example, the hardware and/or software of smartphone 22 may be configured to capture images of the optical fiber 20 and endface 51. The smartphone 22 may also be configured to display live and captured still and/or moving images of the optical fiber 20 and endface 51, such as via a built in display, or shared via a network connection. The captured images can be stored, transferred, and managed by the smartphone 22 hardware and/or software. In addition, the software of smartphone 22 may be further configured to analyze the captured images, and may also be configured to annotate or otherwise process the captured images in order to provide useful information. The above functions may be configured to be performed manually, automatically, or both.
If the fiber cable is printed with bar codes, it can also be scanned by the mobile device to QC the cable, while providing a way of tracing the cable without additional equipment cost.
In the above examples of
In another example,
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.