The invention relates generally to marine seismic prospecting and, more specifically, to devices and methods for controlling the lateral position of streamer cables towed underwater behind survey vessels.
In marine seismic exploration, instrumented cables, known as streamers, are towed underwater by a survey vessel. The streamers are outfitted with a variety of electronic devices, including hydrophones that detect seismic signals transmitted into the water and reflected off geologic structures beneath the sea floor.
Devices known as cable-leveling birds are attached to a streamer at intervals along its length to control the streamer's depth. The birds are equipped with adjustable diving planes, generally referred to as wings, each having a pitch axis about which the wings can be pivoted by a motor to generate the lift needed to maintain the cable at a desired depth. Most commonly, the birds are rotatably attached to the streamer and weighted to hang pendulously from the cable with the pitch axis of the wings below the cable. These birds are effective depth-control devices.
It is not uncommon for a survey vessel to tow six or eight or more streamers of lengths up to 12 km. Because the costs of lost survey time and of replacing a damaged or lost streamer are so high, it is important that the streamers not become entangled during their deployment. Entanglement is more likely to occur in the presence of strong cross currents or while the survey vessel is turning to make another pass across the survey zone. To help avoid entanglement in turns, for example, each streamer is often operated at a different depth. While this technique provides some measure of entanglement control, it also subjects the cables to potentially strong shear layers of current that vary considerably with depth, possibly increasing the risk of entanglement. Generally the most satisfactory way to avoid entanglement with conventional systems is to steer the vessel through wide turns and to overspace the streamers from each other. But these techniques increase cost and reduce the precision of the seismic image.
Paravanes and other devices are used to separate the streamers at their head ends close to the survey vessel. But lateral streamer control and streamer position predictability diminish as cable tension lessens down the lengths of streamers. The wake created by the seismic vessel creates a phenomenon known as “trouser” effect on the array. The streamers fan out port and starboard, creating a large void in the seismic coverage directly aft of the vessel. The streamers assume the shape of trousers. These voids must be resurveyed on subsequent passes known as “in-fill.” In-fill can increase the cost of seismic surveying by up to 20%. Lack of repeatability in processes and positional inaccuracies can reduce the quality of the seismic data and increase the cost by necessitating in-fill. Thus, there is a need to provide a technique for lateral streamer positioning to reduce the cost of operation and to improve the quality of the resultant seismic image.
Today's state-of-the-art seismic vessels have the capacity to deploy, tow, and recover up to 18 streamers. Existing deployment schemes limit the degree to which streamers can be simultaneously deployed, which greatly increases the cost of operation. There is a need to provide for lateral streamer control during the deployment and recovery phases to support simultaneous streamer operation without entanglement.
Accordingly, a method embodying features of the invention is provided for laterally steering a streamer. A bird assembly of the kind typically operated in a depth-controlling orientation in which one or more wings are pivotable about one or more pivot axes that lie generally in a horizontal plane is operated in another way. The bird assembly is operated in an orientation in which the one or more pivot axes of the one or more wings lie largely in a vertical plane to steer the streamer laterally.
In another aspect of the invention, a method for converting a cable-leveling bird into a cable-steering bird comprises ballasting the bird so that it operates underwater in an orientation in which each of a pair of wings of the bird pivots about a pivot axis that lies largely in a vertical plane to steer the attached underwater cable laterally.
In yet another aspect of the invention, an underwater cable-steering device comprises a connector attachable around the periphery of an underwater cable section and rotatable about the cable. A control device includes a body connected to the connector external of the cable. The control device includes a first wing at one side of the body and a second wing at an opposite side of the body. The first wing pivots about a first axis, and the second wing pivots about a second axis. The two axes may coincide, but do not intersect the cable. The control device also includes means for pivoting the wings about their pivot axes. Ballast means is provided to help ballast the steering device to maintain the pivot axes largely vertical.
In another aspect of the invention, an underwater cable-steering device comprises a connector attachable around the periphery of an underwater cable section and rotatable about the cable. A control device includes a body connected to the connector external of the cable. The control device includes a shaft extending through the body and defining a pivot axis. A first wing portion is connected to one end of the shaft at one side of the body, and a second wing portion is connected to the other end of the shaft at an opposite side of the body. The two wing portions may be unitarily formed as a single wing. The pivot axis does not intersect the cable. Ballast means is provided to help ballast the steering device to maintain the pivot axis largely vertical.
In still another aspect of the invention, an underwater cable-steering device comprises a connector attachable around the periphery of an underwater cable section and rotatable about the cable. A control device includes a body connected to the connector external of the cable. A first shaft extends from a first side of the body. A first wing attached at an end of the first shaft can pivot about a first axis defined by the axial rotation of the first shaft. The first axis does not intersect the cable. The control device also includes means for pivoting the wings about their pivot axes. Ballast means is provided to help ballast the steering device to maintain the first axis largely vertical.
These features and aspects of the invention, as well as its advantages, are better understood by reference to the following description, appended claims, and accompanying drawings, in which:
A device, embodying features of the invention, for laterally steering a streamer cable is shown in
A streamer control device 26 has front and rear pylons 28, 29 that include latching hardware to releasably connect the control device to the connectors. The pylons extend from a main body 30, in the form of a hollow tube that houses electronic communication and control circuits 31, a battery 37, and a drive mechanism 38, including a motor. Wings 32, 33 extend from opposite sides of a wing support section 34 of the module body between the two pylons. Each wing is mounted on opposite ends 35′, 35″ of a single shaft or on the ends of separate shafts. A drive mechanism inside the body rotates the single shaft (or the separate shafts) to pivot each wing about pivot axes 36, 37 defined by the shafts, which are offset from the cable and do not intersect its long axis.
Thus far, the description of the cable-steering device essentially is the same as that for a cable-leveling bird, such as the DIGICOURSE® 5010 DIGIBIRD™ brand manufactured and sold by Input/Output, Inc. The purpose of the cable-leveling bird is to work in conjunction with other such birds attached along a streamer. To maintain the streamer at a desired depth, pivot axes of the wings remain generally in a horizontal plane. In this way, the bird pivots the wings in pitch about the pivot axis. As the pitch angle of the wings changes, lift is adjusted and, consequently, the depth of the cable can be controlled. The weight distribution and specific gravity of the cable-leveling bird/connector system is such that it remains suspended beneath the cable with the pivot axes of its wings generally in a horizontal plane.
The cable-steering bird of the invention, however, is ballasted so that the pivot axes of its wings remain largely vertical (V), as shown in
As illustrated in
Other ways of maintaining the pivot axes 36, 37 of the wings 32, 33 largely vertical are shown in
Another way to maintain the pivot axis of the wings vertical is shown in
Another version of cable-steering device is shown in
The wing control portion of the cable-steering bird is shown in
As shown in
A single-wing version of cable-steering bird embodying features of the invention is shown in
Although the invention has been described with respect to a few preferred versions, other versions are possible. For example, the angles of each wing could be changed relative to each other to help maintain the wing pivot axes vertical. As another example, floats can be added to ballast the cable-steering assembly at various positions around the periphery of the connectors, to the body of the assembly at various positions, or internal to the body itself. So, as these few examples suggest, the scope of the invention is not meant to be limited to the preferred versions described in detail.
Number | Name | Date | Kind |
---|---|---|---|
3434446 | Cole | Mar 1969 | A |
3605674 | Weese | Sep 1971 | A |
3774570 | Pearson | Nov 1973 | A |
3931608 | Cole | Jan 1976 | A |
3961303 | Paitson | Jun 1976 | A |
4033278 | Waters | Jul 1977 | A |
4463701 | Pickett et al. | Aug 1984 | A |
4711194 | Fowler | Dec 1987 | A |
4729333 | Kirby et al. | Mar 1988 | A |
4890568 | Dolengowski | Jan 1990 | A |
5443027 | Owsley et al. | Aug 1995 | A |
5529011 | Williams, Jr. | Jun 1996 | A |
5532975 | Elholm | Jul 1996 | A |
6011752 | Ambs et al. | Jan 2000 | A |
6016286 | Olivier et al. | Jan 2000 | A |
6091670 | Olivier et al. | Jul 2000 | A |
6144342 | Bertheas et al. | Nov 2000 | A |
6234102 | Russell et al. | May 2001 | B1 |
6459653 | Kuche | Oct 2002 | B1 |
6525992 | Olivier et al. | Feb 2003 | B1 |
6671223 | Bittleston | Dec 2003 | B1 |
20030039170 | Soreau et al. | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050276161 A1 | Dec 2005 | US |