The present invention relates to a device for launching targets for sport shooting, with instantaneous take-off of the target, with active locking means on the launching arm rotating shaft, i.e., with the fastest possible launching of the target once the order to launch has been given.
It is particularly applicable to the field of training for target shooting whether using a rifle, a gun or even a bow, especially with a voice-operated launching installation of the trench or skeet type that must react very quickly to the shooter's call.
Targets launching devices for shooting sports are known, with such targets being in the form of clay saucers. One of these devices is disclosed for example in document FR-A-2787181.
Such devices have been satisfactory in general, but are not suitable for some shooting disciplines when an almost instant projection of the target is required, with such projection following the shooter's call, for instance.
According to the launching device 1a shown in
The arm 2 is articulated about a substantially vertical axis A1 and is fixed to the upper end of a rotating shaft 3 supported by a crosspiece 7 carried by the upper portion 8 of the device 1a body, with said shaft 3 being free to rotate relative to the crosspiece 7 and to the upper portion 8. During the launching operation, the arm 2 rotates about said A1 axis and undergoes angular acceleration which presses the target against the fixture 28 while making the latter roll towards its end. The target is then ejected while spinning around.
The arm 2 is indirectly integral, through the shaft 3, with a connecting rod 4 rotating about the A1 axis, with one end of the connecting rod 4 being linked to the lower end of the shaft 3. At its other opposite end, the connecting rod 4 comprises a nipple 5 positioned on the side of the connecting rod 4 facing away from the arm 2 and protruding downwards. This nipple 5 of the connecting rod 4 is integral with one end of a draw-spring 6, with the other end of the draw-spring 6 being engaged with the upper portion of the device 1a body 8. The connecting rod 4 is also mechanically connected to a free wheel 20a mounted on the shaft 3.
In the lower part of the device 1a, a gear motor 9 is carried by the lower portion 8a of the device 1a body. This gear motor 9 drives in rotation, through said lower portion 8a of the body, a crank pin 10a the axis of rotation of which is coaxial with the axis of rotation A1 of the connecting rod 4, the shaft 3 and the arm 2. A nipple 11, protruding above the crank pin 10a, is provided on the crank pin 10a, and the trajectory of which, during the rotation of the crank pin 10a, meets that of the nipple 5 positioned at the end of the connecting rod 4, with such end not being adjacent to the shaft 3. Both nipples 11 and 5 interfere with each other, this advantageously on a height of approximately 3 millimeters.
Located substantially above the attachment of the draw-spring 6 on the upper portion 8 of the device 1a body, is provided a contactor 12 which matches the trajectory of one portion of the arm 2 when the latter has rotated about its A1 axis, with such portion being advantageously the end portion of the arm 2.
In such a device 1a, the arm 2 rotates about the upper 8 and lower 8a portions of the device 1a body, with the rotation of the arm 2 being advantageously executed counter-clockwise with the free wheel 20a, thus preventing any rotation 7 of the arm 2 in the opposite direction.
To initiate the launching of a target, a remote triggering means commands the gear motor to turn 9. During this step, also called the step of cocking, the crank pin 10 rotates about the pin coaxial with the axis of rotation A1 of the arm 2 and the nipple 11 moves until it comes in contact, advantageously in linear contact, with the nipple 5 carried by the connecting rod 4. The connecting rod 4, the shaft 3 and the arm 2 are then driven in rotation until the arm 2 abuts against the contactor 12. Ideally, this stop is as close as possible to a so-called “zero point” position.
At the <<zero point>>, the arm is not submitted to a torque and thus a balance between the step of cocking and the step of launching is obtained.
While rotating on counter-clockwise, going past the <<zero point>> generates a motor torque on the arm 2 thanks to the tensioned draw-spring 6. If such torque is not hindered by any obstacle, the draw-spring 6 then suddenly expands and the release of the arm 2 causes the launching of the target. During the step of launching by ejecting the target out of the device 1a, the arm 2 almost instantly rotates, due to the expanding action of the draw-spring 6. The arm 2 then successively crosses a so-called rest position, at 180° from the “zero point” which it goes beyond due to its inertia until it reaches a position at 270° from the “zero point”. This position is maintained by the free wheel 20a which prevents any rotation in the opposite direction.
In the device of the prior art, the gear motor 9 is stopped when the arm 2 goes beyond the “zero point” in order to ensure an immediate release upon the order to launch. This position is called the launching position. The balance of the system is then forced and is obtained by adding a moving obstacle on the trajectory of the arm 2. This obstacle consists of a trigger 13 pivoting about a pin 14. The trigger 13 is maintained in contact with an electromagnet rod 15 via a return spring 16.
When the electromagnet 15 is energized, it rotates the trigger 13, thereby releasing the arm 2. This results in an extremely short response satisfactory for the almost instant launching applications.
However, this arrangement has several disadvantages.
A constraint to be considered is the accuracy of the positioning of the contactor 12. If it is activated early, away from the crosspiece 7, the <<zero point>> cannot be gone past, which causes starting being delayed. It is activated late, close to the crosspiece 7, the arm 2 may excessively press the trigger 13 and previously collide with the target placed on the launching plate, which entails a risk of the electromagnet 15 being blocked or the target being damaged. Now, the capacity of the engine to accurately stop in a constant way may vary either with the rise in temperature, or with the voltage. The current adjustment range is about 5 mm in a conventional environment, which is binding.
Besides, using an electromagnet 15 increases the price of the device 1a and may generate various failures, even the locking of the device 1a. Thus, the electric control which must drive the electromagnet 15 before the gear motor 9 may fail and/or the core of the electromagnet 15 may get stuck, as well as the trigger 13, which raises a problem.
One possible consequence is the trigger 13 being locked in the open position, with the arm 2 thus operating in burst. Human intervention is then required not to launch targets unnecessarily.
Another possible consequence is the locking of the trigger 13 in the closed position. In this case, the gear motor 9 pushes the arm 2 to crush the latter. Human intervention is required to unlock the mechanism. Once the obstacle is released, the arm 2 produces its acceleration by making a rapid rotation on 270°. As a draw-spring 6 commonly used requires 100 to 200 kg to be stretched, the energy released during its expansion is directly proportional to its stiffness. Danger is then real for the repairman and extreme caution is required during the repair operations.
The object of the present invention is to design a target launching device which can have an almost instant response to an order to launch while improving security issues and the cocking time of the devices of the prior art.
For this purpose, the invention provides for a target launching device comprising a rotationally mobile arm, launching means and motor means intended for cocking the arm by rotating said arm and a rotating shaft associated up to a so-called “zero point” position, with the launching means and the motor means acting on said shaft and the launching means being under traction without exerting a torque on said arm in said “zero point” position, characterized in that it comprises first and second means for locking the rotation of the arm associated with the motor means and cooperating with complementary locking means inserted between the launching means and the arm rotating shaft, with the first and second locking means and the complementary locking means being so configured as to lock the arm beyond the “zero point” over an angular sector set beforehand according to the direction of rotation of the arm in a launching position, on the one hand, and so as to release the arm beyond the launching position, with the launching means expanding so as to execute the rotation for launching the target, on the other hand.
The technical effect is an almost instant projection of the target when the motor means substantially go beyond the “zero point” and the first and second locking means become inoperative. The solution provided by the present invention has the advantage of providing a short step of cocking with as short as possible a time for launching the next target upon the shooter's call.
This is obtained using locking means, the action of which directly depends on the motor means, with such locking means being first gradually placed in the locking position by the motor means, which are active when the motor means are stopped, after the launching position has been reached, and then deactivated when the motor means are re-activated and when the arm starts rotating again, away from the launching position. This ensures a safe operation of the device, much higher than the system using a trigger and an electromagnet of the prior art.
Additionally, such a device does not require a very accurate detection of the <<zero point>> position, with such detection being advantageously performed by a detector, i.e. a contactor. The positioning range of the contactor may thus be larger than that of the devices of the prior art. Such positioning tolerance facilitates the adjustment and the positioning of the detector, advantageously a contactor.
Besides, the pressure exerted by the launching means onto the complementary locking means, inserted between the launching means and the arm rotating shaft, participates in the speed of retraction of the second locking means upon release of the arm beyond the launching position.
Besides, as the first and second locking means act on the complementary locking means connected to the arm rotating shaft and not on the arm itself, as is the case for some devices of the prior art, this results in the absence of any mechanical constraint on the arm in the launching device according to the invention.
Eventually, the launching device according to the invention raises no locking risk with respect to the state of the art mentioned in the introduction of this patent application and using a trigger and an electromagnet as the arm locking system.
Optionally, the invention further includes at least any one of the following characteristics, which may be alternative or cumulative:
The invention also relates to a method for launching a target using such launching device, which method comprises the following successive steps:
According to an alternative embodiment, the motor means stop further to the detection of a position of the arm corresponding to the “zero point” or slightly beyond the “zero point” being detected.
Advantageously, the method includes a step of maintaining the arm in its final rotating position after the launch, with said final position being the starting position for the step of cocking a new launching cycle.
Other characteristics, aims and advantages of the present invention will appear upon reading the following detailed description and referring to the appended drawings given as non restrictive examples and wherein:
In the following, a target launching device used in sport shooting such as skeet shooting and thus frequently using clay targets will be described. It should be noted here that the present invention is not limited by such use and that it may relate to the launching of foam targets, for example for archery.
Similarly, targets may also be launched substantially in the air with a significant vertical component or substantially at ground level with a significant horizontal component.
“Carried” means that the two elements are made kinematically integral with one another. All the configurations respecting such kinematic simultaneity fall within the scope of the invention. The two elements may be directly or indirectly connected to each other.
Referring to
The target launching device 1 comprises first and second means 10, 11, 19, 20, 21 for locking the rotation of the arm 2 associated with the motor means 9 and cooperating with complementary locking means 5 inserted between the launching means 6 and the arm 2 rotating shaft 3. The first and second means 10, 11, 19, 20, 21 and the complementary locking means 5 are so configured as to lock the arm 2 beyond the “zero point” over an angular sector set beforehand according to the direction of rotation of the arm 2 in a launching position, on the one hand, and so as to release the arm 2 beyond the launching position, with the launching means 6 expanding so as to execute the rotation of the arm 2 for launching the target, on the other hand.
The launching position may match the “zero point” position or be taken by the arm just after the latter goes beyond the “zero point” position. The pre-set angular sector depends on the design of the first and second locking means 10, 11, 19, 20, 21, specifically the second locking means 19, 20, 21 which have to ensure an efficient locking of the complementary locking means 5 in the launching position.
In the embodiments of the invention illustrated in the figures, the target launching device 1 uses some characteristics of the device illustrated in
In such embodiments of the launching device 1 according to the invention, the nipple 5 represents the complementary locking means whereas the draw-spring 6 illustrates the launching means of the device 1. The draw-spring 6 is adapted to be tensioned upon rotation of the arm 2 towards the “zero point” position thereof, with the return of the draw-spring 6 to the expanded position causing the rotation of the arm 2 for the launching of the target by the arm 2.
Still in the embodiments shown in
As can be seen specifically in
The pinion 25 of the first crank pin 10 is driven by the gear motor 9. The first pinion 25 drives a second pinion 26 which in turns engages a third pinion 27. The second pinion 26 is an intermediary pinion and is not compulsory. The third pinion 27 is associated with a second crank pin 21 which belongs to the second locking means according to the present invention which shall be described in greater details in the following.
The embodiments illustrated in
In the embodiments shown in
The third pinion 27, which is shown in
The first and second crank pins 10, 21 may comprise a first end respectively carrying a pinion 25, 27. The stop, as a nipple 11 or a roller 19, respectively carried by the first and second crank pins 10, 21 is preferably arranged at a second end of the crank pin 10, 21 opposite the first end carrying the pinion 25, 27. As regards the second locking means 19, 20, 21, the free wheel 20 of the second crank pin 21 is preferably arranged at the first end. A bar 16, one end of which surrounds the nipple 11, advantageously connects it to the upper portion 8 of the device 1 body, as can be specifically seen in
The first locking means 10, 11 rather aim at guiding the complementary locking means 5 mainly through the nipple 11 upon the rotation of the first crank pin 10 driven by the pinion thereof 25 towards the position matching the <<zero point>> position of the arm 2 and, if need be, slightly beyond such <<zero point>> position whereas the second locking means 19, 20, 21 gradually hold the complementary locking means 5 in the <<zero point>> position and the passing past thereof towards a launching position, so long as the target has not been called.
Then, with the restarting of the motor means 9 which stopped upon reaching the launching position, the second locking means 19, 20, 21 are immediately unlocked and the nipple 5 and further on the rotating shaft 3 and the arm 2, are immediately released, with the latter then rotating to launch the target.
Advantageously, the first and second locking means 10, 11, 19, 20, 21 and the complementary locking means 5 are positioned under the arm 2 rotating shaft 3. They do not directly act on the arm 2 and do not interfere therewith, unlike some devices of the prior art.
Opposite the free roller 19, the second crank pin 21 carries a lug 17 supporting a rod 23 positioned above and raised with respect to the lug 17, and possibly provided with a roll at the free upper end thereof.
Another part of the second crank pin 21, or preferably the lug 17 is pushed towards an element 18a linked to the lower portion 8a of the body, in one position of the free wheel 20. The element 18a may be provided with an adjusting screw 18b, particularly clearly visible in
Elastic means, i.e. a return spring 14, extends while being linked, on the one hand, to the rod 23 supported by the lug 17 of the second crank pin 21 and, on the other hand, to the upper end portion of a rod 18 extending substantially vertically and resting on the lower portion 8a of the device 1 body. Such return spring 14 returns the rod 23 and thereby the second crank pin 21 against the element 18a, specifically against the free end of the screw 18b going therethrough. Other embodiments of the return of the second crank pin 21 against the element 18a are possible too, with the element 18a having other shapes, for instance.
The free end 20, positioned inside the second crank pin 21, is permissive clockwise and does not hinder the return motion of the return spring 14.
As mentioned above for a launching device of the prior art, a contactor 12 may be provided and located substantially above the vicinity of the engagement of the draw-spring 6 with the upper portion 8 of the device 1 body, at one end of said draw-spring 6. A part of such contactor 12 may match the trajectory of a portion of the arm 2 when the arm 2 has rotated about its axis, with such portion being advantageously the free end portion of the arm 2, with such free end portion of the arm 2 carrying an element complementary to the contactor 12. The contactor 12 is so positioned as to trigger the stopping of the gear motor 9 when the launching position of the arm 2 is reached, advantageously the <<zero point>> position or a position slightly beyond the <<zero point>> position.
In operation, the nipple 11 of the first crank pin 10, actuated by the gear motor 9, pushes the nipple 5 of the connecting rod 4 until it goes beyond a position corresponding to the launching position of the arm 2 mentioned above. In such launching position, the contactor 12 then comes in contact with the arm 2 and stops the gear motor 9. The nipple 5 is in contact with the roller 19 of the second crank pin 21 so that the roller 19 is forced counter-clockwise and prevents the arm 2 from launching a target.
Just as a triggering device starts the gear motor 9, the rotation of the shaft 22 releases the free wheel 20 and causes the rotation of the crank pin 21 counter-clockwise. The second locking means 19, 20, 21 then release the complementary locking means 5 and the arm 2 can freely rotate to launch a target.
The method for launching a target using such a launching device 1 may comprise the following steps.
The first step consists in cocking the launching means 6 by rotation of the arm 2 driven by the motor means 9 up to the “zero point”, The first step may be more particularly illustrated by
The second step consists in driving the arm 2 up to the launching position beyond or equivalent to the <<zero point>> in the direction of rotation of the arm 2. The first locking means 11 keep pushing the complementary locking means 5 carried by the arm 2 rotating shaft 3 to a launching position slightly beyond or equivalent to the “zero point” position. During this step, the second locking means 19, 20, 21 gradually become active to lock the nipple 5 and thereby to prevent any rotation of the arm 2 rotating shaft 3.
The third step consists in stopping the motor means 9 after detecting that the “zero point” position has been gone past, and that the arm is in the launching position. Such detection may be executed by a contactor 12 as shown in
The fourth step consists in locking the arm 2 in the launching position, while keeping the launching means 6 under traction, For this purpose, the second locking means 19, 20, 21 hold the complementary locking means 5 in a position corresponding to the launching position.
The fifth step corresponds to the restarting the motor means 9 further to a target call so as to unlock the arm 2. The launching of the target by the arm 2 is then executed by releasing the launching means 6 further to the release of the complementary locking means 5 by the second locking means 19, 20, 21.
Because of the inertia of the system, the arm stops rotating at about 270° from the so-called “zero point” position. Holding such position at 270° is possible thanks to the free wheel 20a provided on the arm 2 rotating shaft 3. With the gear motor 9 operating on, the free wheel 20a becomes driving again and drives the connecting rod 4 again for a new step of cocking.
According to the invention, there is no timing problem since the gear motor 9 only is acted upon, with the locking and release system being mechanically linked thereto. The electrical control is thus simplified and risks of malfunction are reduced. Only a defective draw-spring 6 could lead to a burst start of the arm 2. The safety of persons near the device 1 is thereby significantly improved as compared to the embodiments of the prior art, such as the one shown in
Number | Date | Country | Kind |
---|---|---|---|
14 50123 | Jan 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/050129 | 1/7/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/104272 | 7/16/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1475713 | Napier | Nov 1923 | A |
2158739 | Bingham, Jr. | May 1939 | A |
2245258 | Darrell | Jun 1941 | A |
2996058 | Ervine | Aug 1961 | A |
3097635 | Freeman | Jul 1963 | A |
3470860 | Kane | Oct 1969 | A |
3923033 | Laporte | Dec 1975 | A |
3971357 | LaPorte | Jul 1976 | A |
5249563 | Patenaude | Oct 1993 | A |
5937839 | Nilsson | Aug 1999 | A |
6176229 | Patenaude | Jan 2001 | B1 |
20060065258 | Lovell | Mar 2006 | A1 |
20150168108 | Laporte | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
2137741 | Feb 1973 | DE |
2238136 | Feb 1975 | FR |
Entry |
---|
European Patent Office International Search Report and Written Opinion dated Mar. 30, 2015, for International Application PCT/EP2015/050129, filed Jan. 7, 2015, Applicant, Laporte Holding (9 pages). |
Number | Date | Country | |
---|---|---|---|
20160327379 A1 | Nov 2016 | US |