The present invention generally relates to manufacturing of large structures using composite materials and, more particularly, to laying composite laminate tape material for the manufacture of large aircraft fuselage sections.
The structural performance advantages of composites, such as carbon fiber epoxy and graphite bismaleimide (BMI) materials, are widely known in the aerospace industry. Aircraft designers have been attracted to composites, for example, because of their superior stiffness, strength, and lower weight. As more advanced materials and a wider variety of material forms have become available, aerospace usage of composites has increased. Composite materials have been applied using contour tape laminating machines (CTLM) and automated fiber placement machines (AFPM), for example, in the manufacture of parts such as wing panels and empennage. New and innovative composite lamination technologies are envisioned, such as the manufacture of large aircraft fuselage sections that may exceed, for example, 15 to 20 feet in diameter. For the manufacturing of comparatively smaller parts, such as wing panels and empennage, the CTLM and AFPM technologies have become highly developed, with large, massive, complex lay-up heads that perform well in the applications for which they have been developed. For the new applications of manufacturing large composite structures in the aerospace industry, however, composite lamination techniques that would provide, for example, faster material lay up rates could produce a break-though in productivity and reduce the cost of manufacturing.
Machines with multiple material delivery systems could significantly improve productivity. To take full advantage of multiple material delivery technology, e.g., machines with multiple delivery devices, and to make such technology economically and physically practical, however, requires the development of material lay-up heads that are smaller, lighter, less complicated, less expensive, and more reliable than the comparatively large and complicated lay-up heads of conventional CTLM and AFPM technologies that are used to manufacture comparatively smaller structures such as wing panels and empennage. Greater reliability is important, for example, because a tendency or statistical frequency of a material lay-up head to clog, jam, or misalign the material would be multiplied by the number of lay-up heads, potentially negating part or all of the benefit of multiple tape heads.
A lightweight, simplified and relatively inexpensive material delivery device for the lay-up of large composite aircraft structures—such as fuselages—provides the ability to deploy multiple delivery systems within one machine. Such a material delivery system can lay up composite materials at high rates, yet can be replicated at low cost, given it's simplicity and small size, to enable multiple delivery systems on single machines capable of delivering material at rates (measured in pounds per hour, for example) that multiply current material delivery rates by orders of magnitude.
In one embodiment of the present invention, a material delivery system includes a cutting apparatus having a curved blade and a flat blade. The flat blade moves past the curved blade with a horizontal rocking motion so that the material is sheared at a moving contact point between the curved blade and the flat blade.
In another embodiment of the present invention, a tape head includes a material cutter disposed to cut the composite tape material after the backing is removed. The material cutter includes: a curved blade with a convex cutting surface and a flat blade that contacts the curved blade in at most two contact points along a cutting edge of the flat blade. The curved blade and the flat blade cut the composite tape material without moving the composite tape material sideways.
In still another embodiment of the present invention, a cutting apparatus includes a base; a carriage held to the base so that the carriage can slide vertically up and down with respect to the base; a curved blade having a convex front surface and attached to the base; and a flat blade having an inverted “V” shaped cutting edge and held to the carriage. A blade reaction spring is disposed between the flat blade and the carriage, and the blade reaction spring pushes against the flat blade so that the flat blade pivots and pushes at least one point of the cutting edge into contact with the curved blade.
In yet another embodiment of the present invention a multiple head tape placement system includes a plurality of tape heads. Each tape head includes features for delivering a composite material to a mandrel. A backing is removed from the composite tape material before it reaches a material cutter disposed to cut the composite tape material after the backing is removed and before the material reaches a compaction roller. The material cutter includes a curved blade with a convex cutting surface and a flat blade that contacts the curved blade in at most two contact points along a cutting edge of the flat blade The flat blade moves vertically up and down past the curved blade with a horizontal rocking motion. The curved blade and the flat blade cut the composite tape material simultaneously in two opposing directions without moving the composite tape material sideways.
In a further embodiment of the present invention, a tape lay-up machine includes at most one sliding guide point for a composite material. The sliding guide point is situated where backing material is removed from the composite material. A cutting apparatus is disposed to cut the composite material after the backing material is removed and before the composite material reaches a compaction roller. The cutting apparatus includes a base; a carriage held to the base by bearings; a curved blade having a convex front surface and fixedly attached to the base; and a flat blade having an inverted “V” shaped cutting edge and held to the carriage by a blade retainer. The blade retainer holds the flat blade so that the flat blade pivots horizontally against the blade retainer under the influence of a blade reaction spring and pushes at least one point of the cutting edge into contact with the curved blade. The flat blade contacts the curved blade in at most two contact points as the flat blade moves vertically past the curved blade with a horizontal rocking motion. The curved blade and the flat blade cut the composite tape material simultaneously in two opposing directions without moving the composite tape material sideways.
In a still further embodiment of the present invention, a method includes feeding a material past a curved blade; and moving a flat blade past the curved blade with a horizontal rocking motion so that the material is sheared at a moving contact point between the curved blade and the flat blade.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
The Boeing Company is exploring a variety of methods and tools for making large composite structures. The present application describes an invention that is one of a family of inventions for accomplishing this goal. The present application is related to the following co-pending United States patent applications that are part of this family: U.S. application Ser. No. 10/851,381, filed May 20, 2004, entitled “Composite Barrel Sections for Aircraft Fuselages and Other Structures, and Methods and Systems for Manufacturing such Barrel Sections”; U.S. application Ser. No. 10/822,538, filed Apr. 12, 2004, entitled “Systems and Methods for Using Light to Indicate Defect Locations on a Composite Structure”; U.S. application Ser. No. 10/717,030, filed Nov. 18, 2003, entitled “Method of Transferring Large Uncured Composite Laminates”; U.S. patent application Ser. No. 10/646,509, entitled “Multiple Head Automated Composite Laminating Machine For The Fabrication Of Large Barrel Section Components”, filed Aug. 22, 2003; U.S. patent application Ser. No. 10/646,392, entitled “Automated Composite Lay-Up To An Internal Fuselage Mandrel”, filed Aug. 22, 2003; U.S. patent application Ser. No. 10/646,316, entitled “Unidirectional, Multi-Head Fiber Placement”, filed Aug. 22, 2003; U.S. patent application Ser. No. 10/630,594, entitled “Composite Fuselage Machine”, filed Jul. 28, 2003; and U.S. patent application Ser. No. 10/301,949, entitled “Parallel Configuration Composite Material Fabricator”, filed Nov. 22, 2002; all of which are assigned to the assignee of the present invention and all of which are incorporated by reference into the present application.
Broadly, the present invention provides a lightweight, simplified and relatively inexpensive material delivery for the lay-up of large composite aircraft structures, such as fuselages. In one embodiment, a material delivery system (e.g., tape laying machine or “tape head”) is provided that can lay up composite materials at high rates, yet can be replicated at low cost, given it's simplicity and small size, thus enabling multiple delivery systems on single multiple tape head machines. The tape head of one embodiment is capable of delivering material at rates that exceed current material delivery rates and, combined with greater reliability and multiple head delivery, dramatically improves material delivery rates over current systems.
A material delivery device, e.g., tape head, according to one embodiment provides on-board the tape head composite material supply, material cutting and adding, nip-point heating, internal cooling, backing paper take-up, delivery tension management, and material compaction capability. The material delivery device is capable of delivering materials at higher rates than earlier technology.
In a novel material cutter, cutting contact between the blades is analogous to that of a high quality pair of scissors where the two scissor blades are arched and sprung against each other, being held together at the pivot, and contact each other at a single moving point (apart from the pivot) as the scissors are squeezed, shearing material at the moving contact point. Such a cutting action contrasts with flat blades having an overlapping area of sliding contact between the two blades that increases as the scissors are squeezed and often draws material into the flat overlapping area between the blades, sometimes jamming the blades or damaging the material without cutting it. The cutting action of the present cutter has less tendency to accumulate resins—such as epoxy—and other substances with which the tape material may be coated or pre-impregnated, possibly due to the minimized blade contact area. The reliability of the entire tape head may be improved.
The preferred cutter also can cut in opposing directions simultaneously, to reduce the tendency to slide the tape material sideways, possibly misaligning the pre-impregnated material (“pre-preg”) and requiring correction. Tape head down time is reduced.
The preferred device also carries all heaters, chillers, digital input/output (I/O), and pneumatic controls on the tape head itself and may also use a field-bus connected intelligent motor to reduce the number of tubes and wires that cross the boundary between the tape head and the rest of the lay-up machine and enabling a practical implementation of a “quick-changeable” tape head not seen in the prior art.
Composite tape material 104 may be supplied on reels wound on a cardboard core that can be mounted on supply spool 112. Material 104 may have backing paper 118 on the inside of the tape material 104 as it is wrapped around the core. When material 104 is paid out, any backing paper 118 is removed prior to reaching the cutting apparatus 138, also referred to more briefly as “material cutter”, and compaction roller 136. Typical tape widths range from 1.75 inch to 3.00 inch. Wider widths are practical, and the cutter according to one embodiment may cut any practical width of tape.
Removal of backing paper 118 before material 104 reaches material cutter 138 simplifies the requirements for cutting. There is no requirement to only cut through the material but not the backing paper. Cutting may be further simplified by the fact that only cuts perpendicular to the length of the tape 104 are required, so cutting apparatus 138 is positioned to cut perpendicular to material 104, e.g., perpendicular to the plane of the flat tape material 104 where it passes through cutting apparatus 138. Cutting apparatus 138 may be driven by an actuator 139, which can produce mechanical motion of a cutting blade of cutting apparatus 138. Cutting actuator 139, for example, may be a pneumatic actuator capable of applying approximately 85 pounds (lbs.) of force. The minimum force needed to cut the tape 104 is significantly less, however, and is approximately 30 pounds of force. A reduced cutting force results in a longer cutting time. Also, when epoxy resin builds up on the cutting surfaces, prolonged cutting is possible with greater force. The time for the cutter 138 to extend may be approximately 90 milliseconds (ms). The time is that required to trigger the sensor on the pneumatic actuator 139 that operates the cutter 138 mechanism. The amount of time that the blade of cutter 138 is actually cutting the material of tape 104 may be approximately half that or about 45 ms.
Composite tape material 104 may be a fibrous material with all fibers unidirectional. When pushed on the edges, material 104 may easily deform making guidance difficult. Resin may be stripped from the tape and build up on guide chute 116, and other surfaces where sliding of the material 104 occurs. As a result, the material 104 is conveyed with the backing paper 118 contacting the device's surfaces. In
In addition to the material guidance features, e.g., guidance rollers 114 and fixed guide chute 116, of the tape head 102 that provide for accurate side-to-side placement of material 104, a “pinch” roller 132 engages a servo driven “add” roller 134 to precisely deliver material to the compaction roller 136 nip-point for placing material 104 while the product, e.g., surface 106, is moving or stationary and to accurately place material 104. When no material 104 is being placed, the add roller 134 may be stationary and the pinch roller 132 may be engaged. Both backing paper 118 and composite material 104 may be pinched against the add roller 134. This prevents motion of the tape material 104 thereby maintaining position registration relative to the nip-point 130. When material 104 is “added” the add roller 134 rotates, pulling material 104 and backing paper 118 off the supply spool 112 together. Once material 104 is under the compaction roller 136, the pinch roller 132 is released and the add roller 134 stops. Material 104 is pulled through the tape head 102 by the motion of the head 102 relative to the mandrel 108. Tension is maintained on the backing paper 118 so that, when material 104 is paid out, the backing paper 118 is taken up as required regardless of material 104 delivery rate.
The delivery device (e.g., tape head 102) can be adapted, for example, using coupling 140, to traditional machine tool-like machinery or to use as a robotic end-effecter, e.g., operational mechanism at the end of a robot arm. All heaters, e.g., heat 128, chillers, e.g., at guide chute 116, digital I/O and pneumatic controls, e.g., at coupling 140, reside on the tape head 102 itself to greatly reduce the number of tubes and wires that cross the boundary, e.g., support mechanism 110, between the tape head 102 and the rest of the machine 100 or 101. Such a design enables a practical implementation of a “quick-changeable” tape head 102, which can be more easily serviced, for example, by removing tape head 102 from machine 100 or 101. A “quick-changeable” tape head 102 reduces machine down time, for example, by replacing a malfunctioning tape head 102 with a stand-by unit.
Referring now to
Curved blade 152 is fixed to base 150 using fasteners 158 (see FIG. 6), which may be bolts, for example. The front (cutting) surface of curved blade 152 may be a small segment of a circular cylinder having a longitudinal axis of symmetry that is vertical with respect to the labeling of views. Curvature of the blade surface can be seen more clearly in the bottom view of
Carriage 154 is connected to base 150 by bearings 164 so that carriage 154 can slide vertically up and down. Movement may be supplied, for example, by an actuator 139 (
Flat blade 156 is held on carriage 154 by blade retainer 170. If held loosely, flat blade 156 is free for a front-back rotation 172 (indicated by double arrows in
Flat blade 156 has a cutting edge 180 (
As shown in
As shown in
As shown in
As shown in
The description relates to exemplary embodiments of the invention. Modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
The present application is related to the following co-pending United States patent applications: U.S. application Ser. No. 10/851,381, filed May 20, 2004; U.S. application Ser. No. 10/822,538, filed Apr. 12, 2004; U.S. application Ser. No. 10/717,030, filed Nov. 18, 2003; U.S. application Ser. No. 10/646,509, filed Aug. 22, 2003; U.S. application Ser. No. 10/646,392, filed Aug. 22, 2003; U.S. application Ser. No. 10/646,316, filed Aug. 22, 2003; U.S. application Ser. No. 10/630,594, filed Jul. 28, 2003; and U.S. application Ser. No. 10/301,949, filed Nov. 22, 2002.