1. Field of the Invention
This invention relates generally to a device for limiting rotation of a wheel, and more particularly, but not by way of limitation, to a device that may be placed onto the individual wheels of a skateboard to limit rotation of the wheels.
2. Description of the Related Art
A typical skateboard has a deck, two trucks, and four wheels. In its simplest form, riding a skateboard involves standing on the deck and pushing off the ground to propel the skateboard along the ground on the wheels. It is common, however, for skateboard riders to perform tricks that involve the wheels of the skateboard leaving the ground. These tricks, and even tricks for which the wheels do not leave the ground, require balance and particular movements, both of which may be perfected through extensive practice. The wheels of the skateboard complicate such practicing, as performing a trick incorrectly or incompletely could result in the skateboard rolling away, causing the rider to fall.
Several training aids have been developed to address this problem. These typically require some modification of the skateboard, such as removing the wheels or adding additional elements. These modifications may be difficult and, more importantly, may change how the skateboard functions in some significant way: make the skateboard heavier, prevent access to elements such as the underside of the deck for balancing tricks, prevent the proper functioning of the trucks, etc. Thus, once the modifications are removed, the skateboard no longer behaves how it did when the rider was practicing, forcing the rider to re-learn certain elements.
Based on the foregoing, it is desirable to provide a device that limits the rotation of the wheels of the skateboard so that the skateboard cannot roll while the rider practices tricks.
It is further desirable for the device to allow the user to learn tricks, develop muscle memory, train reflexes, and get over fear.
It is further desirable for the device to be easy to install without tools and without removing parts or otherwise modifying the skateboard, allowing the device to be temporarily installed to the skateboard, such that it stays in place while the rider performs tricks, and easily removed so that the rider can resume normal operation of the skateboard.
It is further desirable for the device to be lightweight so that it does not affect the weight and general feel of the skateboard and does not change the center of gravity of the skateboard.
It is further desirable for the device to work with a variety of skateboard dimensions and configurations.
It is further desirable for the device to allow access to the center, nose, and tail areas of the board, allowing for contact with surfaces and obstacles such as rails, stairs, and platforms.
In general, in a first aspect, the invention relates to a device for use with a wheeled device comprising a deck and at least one wheel attached to the deck with a gap between the wheel and the deck, such as a skateboard, the device comprising a physical stop secured against one wheel of the skateboard. The skateboard may comprise multiple wheels and the device may comprise multiple physical stops, each physical stop secured against one wheel.
The physical stop may comprise a block of resilient material, where the block is thicker than the gap between the wheel and the deck and is capable of being placed in a semi-compressed or compressed state into the gap such that the block exerts pressure on the wheel sufficient to prevent the wheel from freely rotating. The block may be wider or narrower than the wheel, and may be generally parallelepiped-shaped with a recess corresponding to the wheel's location when the block is in place in the gap. The block may have an angled top surface, and may have cut out areas running horizontally through the block. The block may have a bottom surface in contact with the wheel and the bottom surface may have a coating of a material with a higher coefficient of friction than the block. The block may have at least one surface with a coating having at least one physical characteristic different from that of the block.
The physical stop may comprise a holder at least partially surrounding the wheel and at least one protrusion from the holder, where the protrusion is adjacent a rolling surface of the wheel and is capable of functioning as a chock when the protrusion is in contact with a surface upon which the wheel is attempting to roll and where the holder secures the protrusion to the wheel such that the protrusion moves with the wheel. The holder may be generally cylindrical and may surround the rolling surface of the wheel. The holder may be made of an elastic material capable of deforming for placement around the wheel but conforming to the shape of the wheel to fit securely around the wheel such that the holder prevents the wheel from rotating when on a surface. The holder may have an inner surface with a generally cylindrical cross section and an outer surface with a generally rectangular cross section. The protrusions may run crosswise along the width of the wheel, perpendicular to a path of rotation of the wheel. The holder may surround the wheel from the sides, with the protrusions extending between the sides across the rolling surface of the wheel.
Other advantages and features will be apparent from the following description and from the claims.
The devices and methods discussed herein are merely illustrative of specific manners in which to make and use this invention and are not to be interpreted as limiting in scope.
While the devices and methods have been described with a certain degree of particularity, it is to be noted that many modifications may be made in the details of the construction and the arrangement of the devices and components without departing from the spirit and scope of this disclosure. It is understood that the devices and methods are not limited to the embodiments set forth herein for purposes of exemplification.
In general, in a first aspect, the invention relates to a device for limiting rotation of a wheel for a skateboard. A typical skateboard has a deck 1 and two trucks 2, each of which has two wheels 3. The trucks 2 connect the wheels 3 to the underside of the deck 1 and pivot to allow the skateboard to turn. While this typical skateboard configuration is shown in
The device for limiting rotation of a wheel is generally a physical stop secured against one of the wheels 3 of the skateboard. As seen in
The block 4 may have any appropriate shape, the most simple being a cuboid, although it may be desirable for the block 4 to roughly mimic the shape of the space between the deck 1 and the wheel 3. As seen in
Different sizes of the block 4 may be used to vary the degree of rotation allowed. This allows different blocks 4 to be used for different skill levels. Once a rider progresses, he or she may advance by using blocks 4 that allow for limited wheel rotation. Additionally, blocks 4 may be used on any number of wheels 3, from one to all, to vary training difficulty and allow for more or less rotation.
Material for the block 4 may vary depending upon user requirements, such as different stiffnesses, changes in surface friction, reduced weight, increased durability, etc. Friction coating may be added where the block 4 contacts the wheel 3 to stop wheel rotation while minimizing preload, thus reducing the effort required to install. Additionally, not coating the other surfaces may result in minimizing the friction where the block 4 contacts the deck 1, which also reduces the installation forces required.
The block 4 is light, portable, and temporary, can be installed without tools, and allows the rider to use his own equipment, with the actual wheels maintaining contact with the ground. Added mass is insignificant relative to the mass of the skateboard, and significantly less than other solutions currently available. Any added mass is near the center of gravity of the skateboard, resulting in insignificant changes to the dynamic rotational properties of the skateboard assembly. Another advantage is that one size of the block 4 may work with a variety of skateboard dimensions and configurations. The skateboard does not have to be disassembled to install the block 4, which is an advantage over several currently available skateboard training devices. Several variations may use the wheel 3 for leverage to facilitate easy installation. The block 4 does not generally come into contact with the ground or other surfaces, minimizing wear. The block 4 does not cover or prevent access to the center, nose, or tail areas of the board, allowing for contact to surfaces and obstacles such as rails, stairs, or platforms. A secondary benefit of the block 4 is that it may decrease the flexibility that results in rotation of the skateboard deck about the long axis (the forward/aft axis), which helps stabilize the skateboard while learning certain tricks and training for balance. Finally, the blocks 4 may be used on skateboard assemblies in retail environments, sold as part of the packaging to prevent use while in store or during transportation.
As seen in
The chock-type device 5 may have any number of protrusions, including four, as seen in
As seen in
The configuration shown in
The chock-type device 5 may not prevent rotation of the wheel 3 when not in contact with a surface, but may allow the wheel 3 to freely rotate until it comes into contact with a surface.
In general, the chock-type device 5 may be flexible so that it can be stretched over a range of skateboard wheel diameters and widths. The chock-type device 5 may be designed so that friction and subsequent abrasion from the riding surface does not quickly wear the part out. It is desirable for the chock-type device 5 to avoid frequently departing the wheel during use, such as from striking the ground or twisting the skateboard. The retention may be accomplished through preload from stretching over the wheel, the coefficient of friction of the wheel chock material at the wheel interface, and design features that allow the device to self-center on the wheel as it comes into contact with the ground, or any combination of these. The key is that the chock-type device 5 prevents or limits rotation of the wheel when the wheel is in contact with the ground.
The chock-type device 5 shares the majority of the advantages of the block 4, with even more universality. Additionally, the chock-type device 5 does not influence the flexibility of the skateboard. The chock-type device 5 is light, portable, and temporary, can be installed without tools, and allows the rider to use his own equipment. The chock-type device 5 has low mass, which results in insignificant changes to the mass properties of the skateboard assembly. The mass is not significant relative to the skateboard assembly, and also is considerably less than other currently available products. The mass of the chock-type device 5 is added to the wheels 3, and thus does not change the dynamic rotational properties of the skateboard assembly. The chock-type device 5 also does not change the flexibility of the skateboard deck 1/truck 2 combination at all, allowing the rider to adapt to the feel and weight of their own skateboard, rather than a separate training apparatus or a device that alters the skateboard flexibility. The chock-type device 5 does not require one to disassemble a skateboard to install. It does not cover or prevent access to the center, nose, or tail areas of the board, allowing for contact to surfaces and obstacles such as rails, stairs, or platforms. The chock-type device 5 is portable, and is so small and flexible that it can be carried in a shirt or pants pocket, allowing for easy transport while riding a skateboard. Anywhere from one to four chock-type devices 5 may be used to vary training difficulty, or to allow for more or less maneuvering of the skateboard. Finally, the chock-type device 5 may be used on skateboard assemblies in retail environments, sold as part of the packaging to prevent use while in a store or during transportation.
There are three specific design iterations discussed that have been manufactured and tested. Concept 1 is a cylinder design, as seen in
Concept 2 is a cage design, and functions the same as concept 1. Concept 2 could be construed as Concept 1 with holes in the bands where they would contact the wheel riding surface, as seen in
Concept 2a is an extended cage design, as seen in
Whereas, the devices and methods have been described in relation to the drawings and claims, it should be understood that other and further modifications, apart from those shown or suggested herein, may be made within the spirit and scope of this invention.
This application is based on and claims priority to U.S. Patent Application No. 61/746,349 filed Dec. 27, 2012.
Number | Name | Date | Kind |
---|---|---|---|
2631861 | Daniska | Mar 1953 | A |
D242938 | Famolare, Jr. | Jan 1977 | S |
4003582 | Maurer | Jan 1977 | A |
4027890 | Volkmann | Jun 1977 | A |
4037852 | Bayer et al. | Jul 1977 | A |
4084831 | Akonteh et al. | Apr 1978 | A |
4088334 | Johnson | May 1978 | A |
4413842 | Loredo | Nov 1983 | A |
5803473 | Bouden | Sep 1998 | A |
5924733 | Palleschi | Jul 1999 | A |
6007074 | Tarng | Dec 1999 | A |
D481433 | Guerra et al. | Oct 2003 | S |
6820881 | Berry | Nov 2004 | B1 |
7070192 | Steiner | Jul 2006 | B1 |
7159879 | Cole | Jan 2007 | B2 |
7237784 | Monteleone | Jul 2007 | B1 |
7341260 | Hosoda et al. | Mar 2008 | B1 |
8127895 | Keating | Mar 2012 | B2 |
Number | Date | Country |
---|---|---|
1009857320000 | Sep 2010 | KR |
WO03051473 | Jun 2003 | WO |
2011008108 | Jan 2011 | WO |
Entry |
---|
International Search Report and the Written Opinion of the International Searching Authority; Korean Intellectual Property Office, Republic of Korea, Apr. 22, 2014. |
Number | Date | Country | |
---|---|---|---|
20140182979 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61746349 | Dec 2012 | US |