The present invention concerns a loading device for a shaft furnace. More particularly, it concerns the cooling of a loading device for a shaft furnace, such as a blast furnace, comprising a housing to be mounted at the top of the shaft furnace, a suspension rotor suspended in such a way that it rotates on that housing, a loading chute suspended in the suspension rotor and at least one cooling circuit supported by the suspension rotor.
In 1978, the company Paul Wurth S. A. proposed such a loading device, which is described in detail in U.S. Pat. No. 4,273,492. The suspension rotor in this device is fitted with a lower protective screen which surrounds the chute feed channel and protects the drive means mounted in the housing against the radiant heat from the inside of the shaft furnace in particular. To this end, the lower screen contains a cooling circuit which is supplied with liquid coolant via a rotating annular connection around the chute feed channel. This rotating connection comprises a rotating ring and a fixed ring. The rotating ring is an extension of the suspension rotor and forms an integral part of it, extending beyond of the housing. The fixed ring is fastened to the housing and the rotating ring has a clearance around the fixed ring. Two cylindrical roller bearings are fitted, designed to centre the rotating ring in the fixed ring. The fixed ring comprises two annular grooves one above the other, facing the external cylindrical surface of the rotating ring. Ports in the external cylindrical surface of the rotating ring facing the two grooves define the connection passages of the cooling circuit. Watertight fittings mounted along both sides of each groove abut the external cylindrical surface of the rotating ring to ensure that there are no leaks between the rotating ring and the fixed ring. In practice, it has emerged that a rotating joint of this kind is largely unsuitable for a shaft furnace. Indeed, to avoid cooling water leaking into the housing, it is essential to ensure that there are no leaks between the rotating ring and the fixed ring; but, in a shaft furnace, the effectiveness of the watertight fittings deteriorates rapidly, being as they are in contact with a very hot moving ring, which does nothing for their life cycle. Given the variable thermal expansion which occurs, the radial clearance between the rotating ring and the fixed ring varies considerably, which also has an adverse effect on the life cycle of the watertight fittings, and may even cause the rotating joint to seize up and be completely destroyed. It should also be noted that the life cycle of the rotating joint is affected by violent shocks which the suspension rotor with the chute inevitably absorbs. Lastly, it should be noted that such a large diameter rotating joint, fitted with watertight fittings, involves considerable levels of friction, which considerably increases the power required to start the chute moving. In conclusion, it emerges that a rotating joint of the type described in U.S. Pat. No. 4,273,492 has too many disadvantages to be a viable solution to feeding a cooling circuit mounted on a feed device for a rotary furnace.
To avoid all these disadvantages, as early as the company Paul Wurth S. A. proposed a cooling device for a loading system for a blast furnace without any watertight fittings. This cooling device, which is described in detail in U.S. Pat. No. 4,526,536, has been installed in numerous installations for loading blast furnaces throughout the world. It is characterised by an upper annular tank, which is mounted on an upper sleeve of the suspension rotor and which is fed with cooling water by gravity. A cooling water circuit is incorporated in the housing, and comprises one or more ports above the upper annular tank enabling cooling water to flow by gravity into the upper annular tank, which rotates together with the suspension rotor. The upper cooling tank is connected to a number of cooling coils installed on the suspension rotor. These coils have outlet pipes discharging into a lower annular tank which is fixed and cannot rotate, as it is mounted on the bottom of the housing. The water therefore flows by gravity from a fixed non-rotating supply into the upper annular tank of the suspension rotor, then passes under the influence of gravity into the annular housing tank and is then discharged from the housing. Water gauges in the two annular reservoirs enable the circulation of cooling water to be monitored. In the upper annular tank, the level is adjusted such that it remains between a minimum level and a maximum level at all times. If the level falls to the minimum level, the supply to the annular tank is increased to ensure the necessary supply to the coils. If the level rises to the maximum level, the supply to the annular tank is reduced to avoid the annular tank overflowing.
The first disadvantage of the 1982 cooling device is that the pressure available to move the cooling water through the cooling circuits is essentially governed by the difference in height between the upper tank and lower collecting tank. The suspension rotor must therefore be fitted with low-loss cooling circuits, which is a considerable disadvantage in terms of space occupied and/or cooling efficiency. In particular, there is a risk of local overheating due to the slow circulation speed of the cooling water in the cooling coils. A second disadvantage of the cooling device of 1982 is that the gases from the blast furnace come into contact with the cooling water already in the upper annular tank. As these blast furnace gases carry considerable quantities of dust, this dust inevitably passes into the cooling water. This dust forms sludge in the upper annular tank, which passes through the cooling coils and may block them up. The blast furnace gases also turn the cooling water acid, which tends to corrode the cooling circuits.
To create cooling circuits of higher capacity, it has been proposed, in patent application DE 3342572, to fit these circuits with an auxiliary pump mounted on the suspension rotor. This auxiliary pump is driven by a mechanism which converts the rotation of the suspension rotor into rotation of a drive shaft for the pump. It follows that the auxiliary pump only works when the rotor is rotating; and furthermore, such an auxiliary pump is rather sensitive to the sludge which passes through the cooling coils.
Patent application WO 99/28510 presents a method for cooling a loading device of the type described above, which is fitted with a rotating connection. Contrary to the doctrine of the state of the art, no attempt is made to ensure that the rotating connection is totally watertight, as required in U.S. Pat. No. 4,273,492, for example, nor to avoid leaks outside the rotating connection by a system of level controls, as specified in U.S. Pat. No. 4,526,536. Instead, it is proposed to provide a supply of liquid coolant to the rotating connection in such a way that a leakage flow passes into an annular separation slit between the rotating and fixed sections of the connection to form a liquid watertight fitting which prevents dust penetrating into the rotating connection. This leakage flow is then collected and drained off out of the housing, without passing through the cooling circuit. The result of this is that dust sludge no longer passes through the cooling circuit, and so does not risk clogging it up.
Patent application WO 99/28510 proposes a number of embodiments of the rotating annular connection. In a first embodiment, the fixed section is an annular block which is adjusted with clearance in an annular channel of the suspension rotor, such as to be separated from each of the cylindrical walls of that channel by an narrow annular radial slot. To reduce the leaks via these two annular radial slots, patent application WO 99/28510 proposes to provide each annular slot with one or more lipped watertight fittings or to design each annular slot as a labyrinth watertight fitting. One drawback with this method is that the annular channel in the suspension rotor has to be machined with great precision, and is therefore very expensive. The annular block must also be fitted very precisely in the annular channel of the suspension rotor. This also means that this method is highly prone to centring errors of the rotation of the suspension rotor, and to violent shocks absorbed by the suspension rotor. Another drawback is that the complete suspension rotor has to be removed to repair a damaged annular channel. In an alternative embodiment, the fixed section of the rotating joint consists of a fixed rotary ring, which rests axially, via two watertight fittings, on a ring mounted in an annular channel in the suspension rotor. This fixed rotary ring can slide vertically, such that it can be pressed against the ring mounted in the annular channel of the suspension rotor. This method is relatively vulnerable to variation in the plane of rotation of the suspension rotor. Such variations in the plane of rotation of the suspension rotor are hard to avoid, since the loads on the bearing ring supporting the suspension rotor in the housing are not generally symmetrical with respect to the axis of that rotation, and vary with the angular position of the loading chute.
In conclusion, more than twenty years after the date on which U.S. Pat. No. 4,273,492 was lodged, there is still no satisfactory solution to supplying rotary equipment in a loading device for a shaft furnace with a pressurised liquid coolant.
It will therefore be readily appreciated that the loading device of the present invention finally provides a satisfactory solution to the problem.
It should be recalled first of all that the loading device according to the invention is of the type which consists of a housing mounted at the top of a shaft furnace, a suspension rotor suspended in that housing in such a way that it can rotate, a loading chute suspended in the suspension rotor and at least one cooling circuit supported by the suspension rotor. This cooling circuit is fed by a liquid coolant through a rotating annular joint which is of the type consisting of: a fixed ring mounted in the housing, a rotating ring rotating with the suspension rotor and bearings between the fixed and rotating rings. In this rotating joint, the fixed and rotating rings together form a cylindrical interface in which one or more annular grooves transfer a pressurised liquid coolant between the fixed and rotating rings. The transfer of the liquid coolant from the rotating ring to the suspension rotor is then effected by connections between the rotating ring and suspension rotor. The device according to the invention is distinguished in particular by the characteristics which will be explained below. The rotating annular joint is mounted on the inside of the housing, in an annular tank for collecting leaks which is formed by the suspension rotor. Furthermore, the rotating ring of this rotating joint is mounted solely on the fixed ring by means of bearings. Selective coupling means couple this rotating ring, floating on the fixed ring, with the suspension rotor in such a way as to transmit the rotational motion of the suspension rotor to the rotating ring selectively, while at the same time preventing other forces from being transmitted from the suspension rotor to the rotating ring. Lastly, the connection means include a deformable tubular section, such that these connection means form a non-rigid connection between the rotating ring and the suspension rotor. It will be appreciated that, finally after twenty years, these characteristics provide a reliable solution to supplying rotating equipment of a loading device for a shaft furnace with pressurised liquid coolant. Indeed, in the solution according to the invention, the rotating joint does not cause any problems of leakage or of excessive friction, nor any problems with the life expectancy of the watertight fittings nor any problems of differential thermal expansion or problems of seizure. The rotating joint is not susceptible to the violent shocks that are inevitably absorbed by the suspension rotor holding the chute. Nor is it susceptible to rotor centering inaccuracies and variations in the plate of rotation of the suspension rotor. No special machining is required for the suspension rotor of the chute. The rotating joint can be replaced easily without removing the suspension rotor.
It will also be appreciated that the device according to the invention enables a cooling circuit supported by the suspension rotor to be integrated easily in a closed cooling circuit. To this end, it is sufficient to provide a first annular groove in the cylindrical interface to transfer liquid coolant from the fixed ring to the rotating ring, and a second annular groove in the cylindrical interface to transfer liquid coolant from the rotating ring to the fixed ring. This enables liquid coolant to pass back and forth through the rotating annular joint.
Alternatively, the cooling circuit or circuits may include one or more open outlet pipes. In this case, the housing might advantageously include a fixed annular tank for collecting liquid coolant into which the discharge passage or passages run when the suspension rotor is rotating. Drainage facilities are associated with the fixed annular tank for draining the liquid coolant out of the housing in a controlled fashion.
The drainage facilities are advantageously connected to the annular tank for collecting leaks to drain the leaks which the latter collect so they can be drained out of the housing in a controlled fashion.
In a preferred embodiment of the device according to the invention, the fixed ring of the rotating joint is supported by an annular flange which is fixed to the housing. The annular leak collecting tank then comprises upper edges which together with this annular flange form labyrinth watertight fittings. The rotating joint is therefore relatively well insulated from the rest of the housing.
The connection means advantageously include one or more flexible couplings, compressible axially, which are advantageously supported by the rotating ring and include a connecting head. This coupling head is associated with a coupling seat arranged in the annular leak collecting tank, so that the coupling head sits on the coupling seat when the rotating annular joint is fitted in the annular leak collecting tank. It will be appreciated that this method makes fitting and removing the rotating annular joint extremely easy.
The aforesaid connection means advantageously include a simple radial cross member mounted in the annular leak collecting tank of the suspension rotor and a notch in the rotating ring. This notch then engages the radial cross member when the rotating annular joint engages in the annular leak collecting tank.
The connecting means advantageously feed into an annular collecting tank fitted below the annular leak collecting tank. A number of cooling circuits supported by the suspension rotor are then connected to the annular collecting tank.
In a preferred embodiment, a pair of axially-spaced watertight fittings is mounted in the cylindrical interface, between an annular groove and the bearings, or between two adjacent annular grooves. A drain port drains the area of the cylindrical interface between the two watertight fittings of a pair of watertight fittings in the annular output collection tank.
Other particular features and characteristics of the invention will emerge from the detailed description of a number of advantageous embodiments presented below, by way of illustration, and referring to the drawings attached:
In the figures shown, item numbers which are the same indicate components which are similar or identical.
This device consists of a housing 12 with an annular flange 14 at the bottom, a support plate 16 at the top and a side wall 18. The annular flange 14 connects the housing 12 to a mating flange (not shown) of a shaft furnace, to produce a watertight joint. The support plate 16 is connected to the bottom of a hopper or gate housing (not shown). Side wall 18 provides a watertight connection between flange 14 and supporting plate 16. A fixed feed sleeve 20 is mounted in a central opening of the support plate 16 by means of an annular flange 22. This fixed feed sleeve 20 extends into housing 12 to define a feed channel 24 for the material to be loaded into the shaft furnace. This feed channel 24 has a central axis 26 which is normally coincident with the centre line of the shaft furnace.
A suspension rotor 28 for chute 10 is mounted in housing 12. The upper end of this suspension rotor 28 forms a suspended sleeve 30, which surrounds the feed sleeve 20 and is suspended in housing 12 with the aid of a large-diameter bearing 32. The lower end of suspension rotor 28 forms a shield 34 in the central opening of the lower flange 14 of housing 12. It also supports the suspension bearings 36 for chute 10.
A motor (not shown) engages in a ring gear 38 on suspended sleeve 30 to drive the suspension rotor 28, and therefore chute 10 suspended in it, to rotate it around axis 26. Chute 10 is also usually fitted with a pivoting device (not shown), which allows-its-its angle of inclination to be varied by letting it pivot on its suspension bearings 36 around an axis 40 perpendicular to the axis of rotation 26 (in
To protect the shield 34 from the high temperatures found in a shaft furnace and to prevent these transmitting heat to the inside of housing 12, shield 34 is equipped with cooling circuits 421, 422, 423 and 424, in which liquid coolant, such as water, is circulated. These cooling circuits 421, 422, 423 and 424 advantageously contain baffles or tubes (not shown) which circulate the cooling water along a preset route along the walls of the shield 34. They are connected to a liquid coolant distribution circuit by means of a rotating annular joint, which is indicated throughout as item 44. The latter is fitted inside housing 12 in an annular leak collecting tank 46, which is formed by the upper end of the suspended sleeve 30 of suspension rotor 28.
Rotating annular joint 44 will now be described in more detail, with the aid of
Looking at
Referring to
To summarise, the pressurised liquid coolant supplied to connection 70 passes through fixed ring 60 along internal passage 72 to annular groove 74, then crosses a cylindrical interface formed by the two cylindrical surfaces 76, 82, and enters the first port 80 in rotating ring 62. In the latter, the liquid coolant passes along internal duct 78 to coupling 84.
Remaining with
After the first coupling 84, the pressurised liquid coolant enters an annular supply collecting tank 114 via coupling seat 108. [Collecting tank 114] is arranged immediately below annular tank 56. Supply pipes for cooling circuits 421, 422, 423 and 424, mounted on suspension rotor 28, are connected to this supply collecting tank 114 in suspension rotor 28.
Looking at
Turning to
Turning back to
Item 134 refers to a drain pipe which is used to drain the leaks which collect in the annular leak collecting tank 46.
Number | Date | Country | Kind |
---|---|---|---|
90794 | Jun 2001 | LU | national |
This application is entitled to the benefit of and incorporates by reference in their entireties essential subject matter disclosed in International Application No. PCT/EP02/06682 filed on Jun. 18, 2002 and Luxembourg Patent Application No. 90 794 filed on Jun. 26, 2001.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP02/06682 | 6/18/2002 | WO | 00 | 12/23/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0300277 | 1/9/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4273492 | Legille et al. | Jun 1981 | A |
4526536 | Legille et al. | Jul 1985 | A |
5252063 | Thillen et al. | Oct 1993 | A |
5799777 | Mailliet et al. | Sep 1998 | A |
Number | Date | Country |
---|---|---|
3809533 | Oct 1988 | DE |
WO 9928510 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040224275 A1 | Nov 2004 | US |