1. Field of the Invention
The present invention generally relates to a device for manufacturing fibrils and a method thereof, more particularly to a device and method being capable of continuously mass producing fibrils.
2. Description of the Prior Art
Macromolecule materials have been made to thin films or laminated products for a while, but the mechanical properties of the thin films or laminated products are worse than the products made by metal or ceramic materials. Even the densities of macromolecule materials are lower, and such characteristic is helpful to promote specific strength. If spinning macromolecule materials to fibers, which highly have orientation, the mechanical properties will be significantly promoted so as to enhance the axial strength thereof, even competing with carbon fibers, for example, Kevlar (poly-p-phenylene terephthalamide) and PBO (polybenzoxazole). Thus, the density of macromolecule fiber is lower and about 1 g/cm3, Kevlar and PBO are the best candidates to flak vest as well.
Due to the limitations of melt fracture and draw resonance for forming fibers, the spinning ways in prior arts may not produce that the diameter of a fiber is smaller than 100 μm. Nowadays, one of the related arts, called electrospinning, is capable of manufacturing such specific products, and it is described in detail as below.
With reference to
With references to
According to the electrospinning introduced above, there are some factors that should be considered, such as solution viscosity, solution surface tension, solution conductivity, electric field intensity, rheology, morphology, electricity, surface phenomena, etc., and even though the structure of the electrospinning device is very simple. More particularly, the current electrospinning may have following disadvantages:
Therefore, how to figure out the disadvantages of prior arts is an important issue to the skilled people in the related field.
The primary objective of the present invention is to provide a device and method for manufacturing fibrils, that is, the device features the characteristics of space saving, continuous processes, flexibility, strength, and the toughness of linear, 2-D and 3-D textile structure in order to be applied in a variety of ways and overcome prior arts. On the other hand, due to the unique device, the sprayed jet produced in the prior art will not be interrupted.
The second objective of the present invention is to provide a device and method so as to enhance the properties of cell adhesion, cell proliferation and directional growth, which are made from matrices comprising biocompatible fibers. Accordingly the fibers with small diameters, referred to herein as fibrils, are produced and with adequate strength for textile procedures; on the other hand, the device applied to tissue engineering can be used to scaffolds or matrices, which comprises non-woven fibrils.
A device for manufacturing fibrils comprises: a rotating device with at least one opening being made of an electric conduction material and hollow for containing polymer or biopolymer; and an outer barrier being made of electric conduction materials and around the rotating device; wherein while revolving the rotating device results in that the polymer or biopolymer is out of the rotating device through the opening so as to gain the fibrils in between the rotating device and the outer barrier.
A device for manufacturing fibrils comprises: a rotating device with at least one opening being made of an electric conduction material and hollow for containing polymer or biopolymer; an outer barrier being made of electric conduction materials and around the rotating device; and a high voltage supply; wherein while revolving the rotating device and electrical field being generated between the rotating device and the outer barrier by the high voltage supply result in that the polymer or biopolymer is out of the rotating device through the opening so as to gain the fibrils in between the rotating device and the outer barrier.
A device for manufacturing fibrils comprises: a central device being made of an electric conduction material; and an outer device with at least one opening being made of an electric conduction material and hollow for containing polymer or biopolymer, which includes ferromagnetic substance, the outer device being around the central device; wherein the polymer or biopolymer can be out of the outer device through the opening by magnetic forces between the central device and the polymer or biopolymer with the ferromagnetic substance so as to gain the fibrils in between the central device and the outer device.
A device for manufacturing fibrils comprises: a central device being made of an electric conduction material; an outer device with at least one opening being made of an electric conduction material and hollow for containing polymer or biopolymer, the outer device being around the central device; and a high voltage supply; wherein electrical field being generated between the central device and the outer device by the high voltage supply results in that the polymer or biopolymer is out of the outer device through the opening so as to gain the fibrils in between the central device and the outer device.
A method for manufacturing fibrils comprises the steps of: (a) providing polymer or biopolymer into a rotating device with at least one opening; (b) revolving the rotating device in order to let the polymer or biopolymer be out of the rotating device through the opening; and (c) gaining the fibrils in between the rotating device and an outer barrier.
A method for manufacturing fibrils comprises the steps of: (a) providing polymer or biopolymer into a rotating device with at least one opening; (b) revolving the rotating device and generating electrical field between the rotating device and an outer barrier around the rotating device by a high voltage supply simultaneously in order to let the polymer or biopolymer be out of the rotating device through the opening; and (c) gaining the fibrils in between the rotating device and the outer barrier.
A method for manufacturing fibrils comprises the steps of: (a) providing polymer or biopolymer with ferromagnetic substance into an outer device with at least one opening; (b) making the polymer or biopolymer be out of the outer device through the opening by magnetic forces between a central device and the polymer or biopolymer with the ferromagnetic substance; and (c) gaining the fibrils in between the outer device and the central device.
A method for manufacturing fibrils comprises the steps of: (a) providing polymer or biopolymer into an outer device with at least one opening; (b) generating electrical field between the outer device and a central device, which is around by the outer device, by a high voltage supply in order to let the polymer or biopolymer be out of the outer device through the opening; and (c) gaining the fibrils in between the outer device and the central device.
Other and further features, advantages, and benefits of the invention will become apparent in the following description taken in conjunction with the following drawings. It is to be understood that the foregoing general description and following detailed description are exemplary and explanatory but are not to be restrictive of the invention. The accompanying drawings are incorporated in and constitute a part of this application and, together with the description, serve to explain the principles of the invention in general terms. Like numerals refer to like parts throughout the disclosure.
The objects, spirits, and advantages of the preferred embodiments of the present invention will be readily understood by the accompanying drawings and detailed descriptions, wherein:
With reference to
More, the melting spinning device 1 for manufacturing fibrils further comprises an ultraviolet device, a heating device, a γ-ray device, etc., so as to cross-link different chemical materials in physical way.
With reference to
More, the electric spinning device 2 for manufacturing fibrils further comprises an ultraviolet device, a heating device, a γ-ray device, etc., so as to cross-link different chemical materials in physical way.
With reference to
More, the melting spinning device 3 for manufacturing fibrils further comprises an ultraviolet device, a heating device, a γ-ray device, etc., so as to cross-link different chemical materials in physical way.
With reference to
More, the electric spinning device 4 for manufacturing fibrils further comprises an ultraviolet device, a heating device, a γ-ray device, etc., so as to cross-link different chemical materials in physical way.
With reference to
With reference to
With reference to
With reference to
It has now been found that the components in textile fiber or matrices of smaller diameter provide water absorbent, water repellent and tissue engineering application, such as cell induction. For this invention, we established a device with rotating center and an outer barrier to document the products. From the concept of this invention, two spinning devices are applied, that is, melting spinning device and electrospinning device with electrical field. The materials could be biocompatible for the purpose of biomaterials, or other textile materials for the industrial use or else. Finally, the specific shape of rift or holes on the rotating device or the outer device can be modified to increase the application, such as polygon base of fiber or hollow fiber. Fibrous, fibril organic and inorganic materials of smaller diameter can be integrated into nonwoven three-dimensional matrices conducive for cell seeding, proliferation, and water channel. These three-dimensional scaffolds or matrices can then be fabricated into appropriate shapes to simulate the hierarchical micro- and macro-geometry of tissues and/or organs to be repaired or replaced.
Many of the applications for these structures including, but not limited to, medical devices and chemical separation and/or protection apparatus require broad ranges of fiber architecture, packing density, surface texture, porosity, total reactive surface areas and fiber. Accordingly, it would be of great advantage in the art in many of these uses, if fibers of smaller diameter with greater strength could be prepared. For the tissue engineering application, the limitations have initiated the search for a dependable biomaterials substitute. However, in order for an implant to be used as a scaffold for tissue engineering, it must be capable of both cell integration and cell conduction. Cell integration refers to direct chemical bonding of a biomaterial to the surface of tissue without any strong immune reaction. This bonding is referred as the implant-tissue interface. Cell conduction refers to the ability of a biomaterial to sustain cell growth and proliferation over its surface while maintaining the cellular phenotype. Normal tissue engineering function is particularly important for porous implants that require cell in-growth for proper strength and adequate surface area for tissue bonding. In addition, implants should be biocompatible.
It has now been found, however, that tissue engineered devices with enhanced properties of cell adhesion, cell proliferation and directional growth can be prepared from matrices comprising biocompatible fibers of a diameter which is an order of magnitude smaller than the cells. Accordingly, the present invention relates to fibers of smaller diameter, referred to herein as fibrils, with adequate strength for use in textile processing processes and methods of producing these fibrils. Tissue engineering devices are also provided which are prepared from scaffolds or matrices comprising fibrils.
As a result of advances in cross technology development in recent years, textile technology with tissue engineering application is becoming a method of choice for the development of scaffold. In this invention, we create an embodiment, which can not only be use in textile production but also in biomaterials production. There are several innovations in this system. First, we create a rotating center with one single or several specific shapes of rift or holes on the surface which can obtain polymer or biopolymer inside. Second, the electrical field can be created by different charge between rotating center and outer line. The electrical force inside the electrical field will drive the polymer or biopolymer to the outer line to produce fibers. Third, the whole system can be easily added some optional device to create more application, such as UV light, temperature controlled, vacuum controlled, freeze drying, etc. Further more; we can change the specific shape of rift or holes on the surface of rotating center to create an optimal fiber shape, for example, if the polygonal like shape of rifts or holes will produce non round shaped fiber.
Further, it has now been demonstrated that the fibrils of smaller diameter of the present invention in various selected architectures enhance interaction of the scaffold or matrix with cells. By “enhanced” it is meant that the scaffold or matrix is prepared from fibrils of smaller diameter in a configuration or architecture which optimizes interactions between the scaffold or matrix and cells which are required for the intended purpose of the matrix. Examples of fibril materials which can be used in this embodiment the present invention include, but are not limited to, non-degradable polymers such as polyethylenes and polyurethanes and degradable polymers such as poly (lactic acid-glycolic acid), poly (lactic acid), poly(glycolic acid), poly (glaxanone), poly (orthoesters), poly (pyrolicacid) and poly (phosphazenes). Other components which can be incorporated into the matrices include, but are not limited to, calcium phosphate based ceramics such as hydroxyapatite and tricalcium phosphate.
Although this invention has been disclosed and illustrated with reference to particular embodiments, the principles involved are susceptible for use in numerous other embodiments that will be apparent to persons skilled in the art. This invention is, therefore, to be limited only as indicated by the scope of the appended claims.
The applicant claim the benefit of the filing date of provisional application No. 60/876,520 filed on Dec. 22, 2006 under 35 USC & 119(e) (1).
Number | Date | Country | |
---|---|---|---|
60876520 | Dec 2006 | US |