The present application relates to a system for measuring orifices and passageways in the human body, including, for example, heart valve annuli.
The accurate measurement of orifices and passageways in the human body is important for the success of a variety of medical procedures. In particular, accurate measurement of the anatomy of the human body is often crucial for the successful implantation of prosthetic devices. For example, in selecting a prosthetic heart valve, it is preferable to select the largest size valve possible. A large effective valve orifice is preferable because it creates less resistance to forward flow and requires the heart to do less work.
Traditional sizing of a heart valve annulus is performed by placing a known diameter sizing apparatus into the annulus and observing the fit of the sizing apparatus. If the sizing apparatus appears to fit easily into the annulus, the sizing apparatus is retracted and a larger sizing apparatus is inserted. In some procedures, the native annulus is expanded from its natural state due to the radial outward pressure of a prosthetic valve implanted within the native annulus. Unfortunately, known sizing apparatuses do not take into consideration the final, functional size of the annulus when expanded by the prosthetic valve. That is, these techniques cannot measure the size of a heart valve annulus when it is expanded under pressure.
In one embodiment, an apparatus is provided for measuring an expanded internal orifice of a patient. The apparatus can comprise an orifice-expanding device, a pressure-measuring device, and a size-measuring device. The orifice-expanding device can be located at or near a distal end of the apparatus. The orifice-expanding device can be radially expandable from a first configuration to a second, expanded configuration to cause corresponding radial expansion of the orifice. The pressure-measuring device can be configured to measure a pressure applied to the orifice by the orifice-expanding device. The size-measuring device can allow a user to measure a dimension of the orifice after it has been expanded by the orifice-expanding device. The measurement of the dimension can be obtained independently of the pressure measurement measured by the pressure measuring device.
In specific implementations, the size-measuring device can comprise a coiled member. The coiled member can surround at least a portion of the orifice-expanding device and can be configured to uncoil when the orifice-expanding device expands from the first configuration to the second configuration.
In specific implementations, the coiled member can have an outer face with visual indicia that correspond to different dimensions for measuring the size of the expanded orifice. In other specific implementations, the coiled member can have a first end and a second end, with the first end being attached to a portion of the orifice-expanding device. The position of the second end of the coiled member relative to the outer face of the coiled member can identify the dimension of the expanded orifice.
In specific implementations, a shaft member can be connected to the orifice-expanding device and the size-measuring device can comprise a wire member that surrounds at least a portion of the orifice-expanding device. The wire member can have a first end and a second end, with the first end being fixed in position relative to the orifice-expanding device and the second end having a marker that is free to move longitudinally along the shaft. The position of the marker along the shaft can identify the dimension of the expanded orifice. In other specific implementations, the wire member can pass through openings in one or more bar members that are attached to the orifice-expanding device.
In specific implementations, the size-measuring device can comprise a locking member. The locking member can surround at least a portion of the orifice-expanding device, and can be configured to increase in diameter from a first position to a plurality of second positions. When the locking member is expanded to one of the plurality of second positions, the locking member can lock in that position, thereby preventing the locking member from returning to the first position. In other specific implementations, the locking member can be a one-way locking member that permits an increase in radial size of the size measuring member but prevents a decrease in radial size of the size measuring member.
In specific implementations, the orifice-expanding device can be an inflatable balloon. In other specific implementations, the pressure-measuring device can measure the pressure exerted by the balloon based on the volume of fluid added to the balloon.
In specific implementations, the orifice-expanding device can have one or more linkages that effect radial expansion of the orifice-expanding device, and the pressure-measuring device can comprise one or more strain gauges positioned on the orifice-expanding device.
In another embodiment, a method can comprise accessing an internal orifice of a patient's body, placing an orifice-expanding device of a sizing apparatus into the orifice, expanding the orifice-expanding device to cause it to exert a desired pressure against the orifice to cause the orifice to expand, and measuring a dimension of the expanded orifice independently of the pressure exerted by the orifice-expanding device.
In specific implementations, the orifice can comprise an annulus of a heart valve and the method further comprises selecting a prosthetic heart valve based on the measured dimension of the annulus, and implanting the heart valve in the annulus. In other specific implementations, the act of measuring a dimension of the expanded orifice can be accomplished while the orifice-expanding device is in the expanded orifice. In other specific implementations, the act of measuring a dimension of the expanded orifice can comprise reading visual indicia on the sizing apparatus and recording the measured dimension.
In other specific implementations, the sizing apparatus can comprise a coiled member surrounding at least a portion of the orifice-expanding device and which can uncoil upon expansion of the orifice-expanding device. The coiled member can have a first end and a second end, and the first end can be fixed relative to the orifice-expanding device. The coiled member can have visual indicia on a surface of the coiled member. The act of measuring a dimension of the expanded orifice can comprise observing the position of the second end of the coiled member relative to the visual indicia.
In other specific implementations, the sizing apparatus can comprise an elongated shaft and a movable indicator coupled to the orifice-expanding device and operable to move longitudinally of the shaft upon expansion of the orifice-expanding device. The act of measuring a dimension of the expanded orifice can comprise observing the position of the movable indicator relative to a location on the shaft.
In specific implementations, the act of measuring a dimension of the expanded orifice can be accomplished after the orifice-expanding device is removed from the body. In other specific implementations, the method can further comprise retaining the orifice-expanding device in an expanding state after the act of expanding the orifice-expanding device and removing the orifice-expanding device from the body in its expanded state in order to measure the dimension of the expanded orifice.
In specific implementations, the method can further comprise measuring the pressure exerted by the orifice-expanding device. In other specific implementations, the orifice-expanding device can be a balloon and the act of expanding can comprise inflating the balloon to expand the orifice. In other specific implementations, the orifice-expanding device can comprise one or more strain gauges and the method can further comprise measuring the strain on the orifice-expanding device when it is expanded and determining the pressure exerted against the orifice by the orifice-expanding device from the measured strain. In other specific implementations, the orifice-expanding device can comprise a non-cylindrical outer surface that generally corresponds to the shape of the orifice.
In another embodiment, a method can comprise radially expanding an orifice in a patient's body and indicating a dimension of the expanded orifice. The act of indicating the dimension of the expanded orifice does not include calculating the dimension based on the pressure exerted by the orifice-expanding device against the orifice.
In specific implementations, the orifice can comprise an annulus of a heart valve and the method can further comprise selecting a prosthetic heart valve based on the dimension of the annulus, and implanting the heart valve in the annulus.
In specific implementations, the act of radially expanding the orifice can comprise inserting an orifice-expanding device in the heart valve annulus and expanding the orifice-expanding device to expand the annulus. The method can further comprise measuring the pressure exerted by the orifice-expanding device against the annulus in order to expand the annulus to a desired pressure.
In specific implementations, the act of radially expanding the orifice can comprise inserting an orifice-expanding device in the heart valve annulus and expanding the orifice-expanding device to expand the annulus. The act of indicating can comprise indicating the diameter of the expanded annulus after it is expanded by the orifice expanding device, and the act of implanting the heart valve can comprise inserting the heart valve in the annulus and expanding the heart valve to expand the annulus and anchor the heart valve in the expanded annulus. The diameter of the expanded annulus after implanting the heart valve can be approximately the same as the diameter of the annulus after it was expanded by the orifice-expanding device.
In specific implementations, the act of implanting the heart valve can comprise inserting the heart valve in the annulus and expanding the heart valve to expand the annulus and anchor the heart valve in the expanded annulus. The pressure exerted by the expanded heart valve can be approximately the same as the desired pressure.
In another embodiment, an apparatus for measuring a heart valve annulus of a patient is disclosed. The apparatus can comprise expansion means for expanding the heart valve annulus and measuring means for measuring the diameter of the expanded annulus. In other specific embodiments, the apparatus can further comprise means for measuring the pressure exerted by the expansion means against the annulus to allow expansion of the annulus to a desired pressure.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
It is often useful to obtain a size measurement of a human orifice. Such sizing is particularly useful during or prior to implantation of prosthetic devices where it can be desirable to obtain a tight fit between the prosthetic device and the orifice into which the prosthetic device will be positioned. Traditionally, such sizing is performed without any consideration of the pressures that the prosthetic device may exert on the orifice during the implantation procedure or orifice dimensional changes due to various physiological conditions (e.g., systolic and diastolic pressures). If the prosthetic device is to be placed into the orifice and then expanded to achieve a tight fit between the prosthetic device and the orifice, the size of the orifice will expand during such a procedure and such expansion should be taken into consideration when sizing the orifice. Thus, it is desirable to either measure the size of the orifice at (1) pressures similar to, or somewhat less than, that which will be applied during implantation of the prosthetic device or (2) pressures that mimic actual targeted physiological conditions to establish a baseline for bio-prosthesis sizing. As used herein, the term “orifice” means any body orifice, annulus, or lumen within the body.
The aortic valve annulus is an example of an orifice that requires accurate sizing for the implantation of a prosthetic device. Surgically implanted heart valves are traditionally sized so that they are small enough to fit into the anatomical location, yet still large enough to fill the space when they are sewn to the patient's annulus. In some circumstances, it may be desirable to secure the valve with an expandable outer stent that exerts a radial outward force on the tissue of the annulus. The outward force exerted by the expanding stent can desirably enlarge the annulus, which allows a surgeon to implant a larger valve in a patient. A larger valve is generally desirable because it creates less resistance to forward flow and requires the heart to do less work.
By inserting a stent that expands the annulus, it is also possible to reduce or eliminate paravalvular leaks by forcing the elastic tissue in the annulus to conform to the more rigid stent. In addition, the outward radial force provided by the stent is directly proportional to the frictional resistance to axial movement. Thus, by increasing the size of the valve, paravalvular leaks can be reduced or eliminated and the axial stability of the device can be improved.
With anatomical structures that have highly variable non-linear elastic modulus that vary significantly from patient to patient, the sizing of the orifice when expanded under pressure can be particularly important. In such cases, the actual normal force that is critical to the frictional resistance to axial movement of the valve for a particular patient cannot be easily determined. To assure the selection of a valve that will provide adequate frictional resistance, a sizing apparatus in particular embodiments can be used to expand an orifice by an application of a radial force similar to, or somewhat less than, the force that will be applied to the surrounding tissue by the deployed prosthetic device. The sizing apparatus desirably includes an orifice-expanding device that allows a surgeon to apply a desired level of force to expand the native orifice, and a measuring device that allows the surgeon to measure the size (e.g., diameter) of the expanded orifice at the desired level of force.
In particular embodiments, a sizing apparatus is provided that allows a surgeon to view the sizing apparatus and the orifice to be sized during the sizing procedure. By providing a sizing device that is capable of being visually observed during expansion of an orifice, it is possible to visually ensure that the device is located in the area of the anatomy that the user intends to measure. The sizing apparatus can also include a measuring device having visual indicia that allows the surgeon to measure the size of the expanded orifice while the distal end portion of the apparatus is still in the expanded orifice.
Embodiments of a sizing apparatus that can be used, for example, to size an aortic valve annulus are discussed in greater detail below.
Balloon 28 is attached to the distal end of shaft 26. Fluid passageway 24 and shaft 26 deliver to the balloon 28 a fluid that is capable of inflating balloon 28. Coil member 30 can be a thin sleeve of a flexible material that is relatively non-elastic. For example, a thin sleeve of a non-elastic plastic film can be coiled around balloon 28. Desirably, the coiled member is formed of a non-elastic material so that as it unwinds it is relatively uniform and constant in length. Coil member 30 can be formed of any suitable material, including, for example, plastics, non-elastic films, metals, or the like.
As shown in
Balloon 28 can be expanded using any known fluid pressurizing device that is capable of expanding balloon catheters to known pressures. For example,
For certain applications, an implantable, radially-expandable valve may be expanded by a balloon inflated to about 3800 mm Hg (5 atmospheres). Accordingly, it may be desirable to expand the sizing apparatus to a pressure that approximates the pressure the valve annulus will experience during expansion of the valve. In order to approximate the pressure that the annulus will experience under valve expansion, it is desirable to apply the same pressure or less pressure than the annulus will experience under valve expansion. Thus, it may be desirable to expand balloon 28 to a pressure between about 200 mm Hg and 5320 mm Hg (7 atmospheres) and more desirably between about 250 mm Hg and 500 mm Hg.
Alternatively, it can be desirable to measure the maximum diameter achieved by the valve annulus during the cardiac cycle, which occurs at the end of systole for the aortic valve. This measurement can then used to establish a baseline for selecting the size of the bio-prosthesis. To determine the maximum diameter of the valve annulus, the sizing apparatus can be pressurized (or expanded) to mimic the physiological condition of the annulus at its greatest diameter. Thus, the pressure that is used to inflate (or expand) the sizing apparatus can be the pressure to actuate (open) the sizing apparatus plus approximately between about 250 mmHg and 500 mmHg, and more preferably about 350 mmHg. This pressure range provides a pressure on the valve annulus that is equal to an estimated maximum physiological pressure seen by the aortic valve annulus (approximately 140 mmHg) plus an additional amount to ensure that the measured size of the annulus corresponds to a valve size that will provide a proper interference fit with the annulus, thereby reducing the likelihood of implant migration and providing improved hemodynamic performance.
After balloon 28 is expanded to the desired pressure, a reading can be obtained from the indicator lines 36 of the sizing apparatus 20. Specifically, the indicator line that aligns with second end 34 of coil member 30 identifies the size of the expanded coil member 30, which corresponds to the size of the expanded orifice. For example, if balloon 28 is expanded and second end 34 of coil member 30 aligns with an indicator line that corresponds to a diameter of 22 mm, the expanded diameter of the orifice can be determined to be 22 mm.
In this embodiment and in other embodiments discussed below, a surgeon can use a pressure measurement or other pressure indicator as a means for determining how much the apparatus will be (or should be) expanded within the orifice. The measurement of the orifice size, however, can be determined independent of the pressure applied. For example, the size measuring device 30 does not attempt calculate the size of an orifice by translating balloon pressure into a balloon diameter; rather, the size measurement device performs the measurement of the orifice independent of the pressure applied, thereby providing a more accurate measurement of the orifice.
As discussed above, desirably, the size of the expanded orifice can be visually determined in-situ by a surgeon by viewing the position of the second end 34 of coil member 30. By providing visual access to the expanded orifice, in addition to knowing the amount of pressure applied to the orifice (as discussed above), the surgeon can visually determine the condition of the expanded orifice. For many applications, the elasticity of a particular orifice can vary greatly between patients and, therefore, it is desirable, if not necessary, to be able to determine the effect of the expandable member on the patient's orifice. This can be particularly true with orifices that are calcified or otherwise diseased. Variations in state of disease, as well as variations in natural elasticity, can make it difficult to approximate the amount of expansion desired in a particular application without first applying a force similar to the force applied by the device subsequently implanted in the annulus and then directly viewing the treatment site for changes prior to implanting the prosthetic device in the annulus.
If the access to the heart and anatomy of the patient permits it, a surgeon could also remove the sizing apparatus from the body, in the expanded form and obtain the size of the expanded coil member in that manner. Alternatively, if a view of the coil member is obstructed by the anatomy of the patient, a surgeon could use other view enhancing equipment to obtain the size of the expanded coil member. For example, a surgeon could use a videoscope to see the markings on the coil member more clearly.
Other markings techniques could be implemented that permit the surgeon to deflate the balloon, remove the sizing apparatus from the body, and then determine the size of the earlier expanded coil member. For example, the coil member could be configured such that the second end of the coil member leaves a visible or otherwise observable mark at its largest expanded location. A surgeon could then view this mark once the sizing apparatus is removed from the body and the expanded size of the sizing apparatus could be determined in this manner.
Thus, when coil member 50 reaches its maximum expansion with the locking mechanism 52 extending into an aperture 54, locking mechanism 52 maintains coil member 50 in that position. Coil member 50 can include visual sizing indicia as discussed above. Alternatively, coil member 50 can be removed from the body and the size determined by some other measurement technique.
The sizer 70 comprises a hub 71 mounted to the distal end of the shaft 66 adjacent to balloon 68, a plurality of elongated arms 76 (three in the illustrated embodiment) rigidly attached to and extending radially outward and then axially in a distal direction from the hub 71 as shown, and a plurality of expanding portions 72 (three in the illustrated embodiment) rigidly mounted to the distal end portions of the arms. The expanding portions 72 extend circumferentially about balloon 68 and have outer surfaces that desirably are shaped to generally conform to the tri-lobe shape of the aortic valve annulus. A locking mechanism 74 can be mounted on the inner surfaces of the expanding members 72.
As shown in
As seen in
In addition, one or more strain gauges 78 can be positioned on one or more of arms 76. Strain gauges 78 can be electrically connected to a processor that can be housed in the handle. As can be seen, outward radial movement of expanding portions 72 causes corresponding outward deflection of the distal ends of arms 76, which in turn increases the strain on the arms. The processor measures the strain on arms 76 and calculates a value corresponding to the pressure or force applied to the valve annulus by the expanding portions 72 based on the measured strain. Strain gauges 78 can be any of a variety of commercially available strain gauge, such as, for example, metal foil type strain gauges. The strain gauge can be used in combination with the pressure monitoring gauge (discussed above) to determine the amount of pressure applied to the expanding portions 72, or it can be used independent of the pressure monitoring gauge. The sizing apparatus can include a visual alpha numeric display located on the handle or at another convenient location to display the pressure applied by the sizer against the annulus. The processor can be any type of processor that can receive electrical signals from the strain gauges and calculate a value corresponding to pressure or force.
In another embodiment, the balloon can be omitted and the expanding sizer 70 can be mechanically expanded to the appropriate size within the annulus. Referring to
For example, as shown in
Expanding portions of a mechanical expanding sizer can be cylindrical or non-cylindrical. As shown in
In another embodiment, an indicator can be provided on a portion of the sizing apparatus other than the orifice-expanding device, such as the shaft or the handle, so that the size of the expanded orifice can be readily determined by a surgeon while the sizing apparatus is still in the body without requiring direct visual access to the portion of the sizing apparatus within or near the orifice.
A tag indicator 126 can be disposed on an outside surface of shaft 122. Alternatively, tag indicator 126 can be disposed inside (or partially inside) shaft 122 with a window member making the indicator visible from outside of shaft 122. A wire 132 is connected to tag indicator 126 and passes through the lumen 124 of shaft 122. Wire 132 then passes through openings on bars 130, which can be mounted on the outer surface of balloon 128 at regular intervals around balloon 128, and forms a coil extending around the balloon. A distal end of the wire 132 is secured to one of the bars 130. When balloon 128 is expanded, the coil of wire 132 that wraps around balloon 128 is increased and the tag indicator 126 is pulled closer to balloon 128, as shown by the arrows of
As discussed above, sizing determinations can be made visually by the implanting surgeon. That is, the implanting surgeon can observe markings on the expanding device in-situ and determine the size of the expanded annulus. Alternatively, the implanting surgeon can remove the expanded device from the patient and either visually determine the appropriate size based on markings on the device or measure the expanded device in some other manner (such as, for example, by fitting the expanded device into pre-sized hole gauges as discussed above). In either case, however, it is desirable that the surgeon be able to visually observe the expanded orifice to make a determination as to whether the orifice is sufficiently expanded.
Sizing can also be achieved without visually observing the sizing apparatus, such as by taking readings off a tag indicator or from a strain gauge as discussed above. Alternatively, sizing can be determined by radiography or echocardiography. This would be especially useful for a sizing apparatus that is deployed via a catheter and that must be deflated or contracted before removal from the body can be achieved.
When implanting valves, surgeons often find that the first selected valve is too small and that the patient would benefit from upsizing to a larger valve. By using the sizing apparatus and method described above, an implanting surgeon can determine the valve size that will be appropriate when the annulus is expanded. Accordingly, the surgeon will not have to experiment with various smaller size valves before finding the valve that is most appropriate to the particular size annulus. Moreover, not only can the surgeon determine the size of the valve that will properly fill the annulus, but the surgeon can determine the size of the valve that will be large enough to exert sufficient frictional resistance to axial movement.
Any standard heart valve surgery techniques can be used to gain access to the heart to obtain the measurements described above. For example, the heart can be accessed by traditional surgical approaches, such as a sternotomy or a thoracotomy. Alternatively, the heart can be accessed through minimally invasive heart valve surgery, such as an upper mini-sternotomy (for aortic valve replacement) or a lower mini-sternotomy (for mitral valve replacement).
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application is a continuation of U.S. patent application Ser. No. 15/462,386, filed Mar. 17, 2017, now U.S. Pat. No. 10,231,646, which is a continuation of U.S. patent application Ser. No. 13/762,232, filed Feb. 7, 2013, now U.S. Pat. No. 9,603,553, which is a continuation of U.S. application Ser. No. 12/606,945, filed Oct. 27, 2009, now U.S. Pat. No. 8,449,625, the entire disclosures of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3143742 | Cromie | Aug 1964 | A |
3164009 | Schaschl | Jan 1965 | A |
3320972 | High et al. | May 1967 | A |
3371352 | Siposs et al. | Mar 1968 | A |
3546710 | Shumakov et al. | Dec 1970 | A |
3574865 | Hamaker | Apr 1971 | A |
3755823 | Hancock | Sep 1973 | A |
3839741 | Haller | Oct 1974 | A |
4016867 | King et al. | Apr 1977 | A |
4035849 | Angell et al. | Jul 1977 | A |
4078468 | Civitello | Mar 1978 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4084268 | Ionescu et al. | Apr 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4172295 | Batten | Oct 1979 | A |
4185638 | Bruner | Jan 1980 | A |
4217665 | Bex et al. | Aug 1980 | A |
4218782 | Rygg | Aug 1980 | A |
4259753 | Liotta et al. | Apr 1981 | A |
RE30912 | Hancock | Apr 1982 | E |
4343048 | Ross et al. | Aug 1982 | A |
4362167 | Nicolai et al. | Dec 1982 | A |
4364126 | Rosen et al. | Dec 1982 | A |
4388735 | Ionescu et al. | Jun 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4451936 | Carpentier et al. | Jun 1984 | A |
4470157 | Love | Sep 1984 | A |
4501030 | Lane | Feb 1985 | A |
4506394 | Bedard | Mar 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4566465 | Arhan | Jan 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4629459 | Ionescu et al. | Dec 1986 | A |
4643194 | Fogarty | Feb 1987 | A |
4680031 | Alonso | Jul 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4725274 | Lane et al. | Feb 1988 | A |
4731074 | Rousseau et al. | Mar 1988 | A |
4778461 | Pietsch et al. | Oct 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4851000 | Gupta | Jul 1989 | A |
4888009 | Lederman et al. | Dec 1989 | A |
4960424 | Grooters | Oct 1990 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5147391 | Lane | Sep 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5258023 | Reger | Nov 1993 | A |
5326370 | Love et al. | Jul 1994 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5376112 | Duran | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5423887 | Love et al. | Jun 1995 | A |
5425741 | Lemp et al. | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5449384 | Johnson | Sep 1995 | A |
5449385 | Religa et al. | Sep 1995 | A |
5469868 | Reger | Nov 1995 | A |
5488789 | Religa et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5489298 | Love et al. | Feb 1996 | A |
5500016 | Fisher | Mar 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5562729 | Purdy et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5578076 | Krueger et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5628789 | Vanney et al. | May 1997 | A |
5693090 | Unsworth et al. | Dec 1997 | A |
5695503 | Krueger et al. | Dec 1997 | A |
5713952 | Vanney et al. | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735894 | Krueger et al. | Apr 1998 | A |
5752522 | Murphy | May 1998 | A |
5755782 | Love et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5797930 | Ovil | Aug 1998 | A |
5800527 | Jansen et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5814098 | Hinnenkamp | Sep 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895420 | Mirsch, II et al. | Apr 1999 | A |
5908450 | Gross et al. | Jun 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5984973 | Girard et al. | Nov 1999 | A |
6010511 | Murphy | Jan 2000 | A |
6010531 | Donlon | Jan 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6106550 | Magovem et al. | Aug 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6176877 | Buchanan et al. | Jan 2001 | B1 |
6197054 | Hamblin, Jr. et al. | Mar 2001 | B1 |
6210338 | Afremov | Apr 2001 | B1 |
6217611 | Klostermneyer | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6241765 | Griffin et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6322526 | Rosenman | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6350281 | Rhee | Feb 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458100 | Roue et al. | Oct 2002 | B2 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468305 | Otte | Oct 2002 | B1 |
6582419 | Schoon et al. | Jun 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6585766 | Huynh et al. | Jul 2003 | B1 |
6598307 | Love et al. | Jul 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6712804 | Roue et al. | Mar 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6764508 | Roehe et al. | Jul 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
6942694 | Liddicoat et al. | Sep 2005 | B2 |
7011681 | Vesely | Mar 2006 | B2 |
7018404 | Holmberg et al. | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7097659 | Woolfson et al. | Aug 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7153324 | Case et al. | Dec 2006 | B2 |
7186265 | Sharkawy | Mar 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201771 | Lane | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7258698 | Lemmon | Aug 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
7300463 | Liddicoat | Nov 2007 | B2 |
RE40377 | Williamson, IV et al. | Jun 2008 | E |
7422603 | Lane | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7513909 | Lane et al. | Apr 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7591848 | Allen | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7622276 | Cunanan et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7641687 | Chinn et al. | Jan 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7740655 | Birdsall | Jun 2010 | B2 |
7799069 | Bailey et al. | Sep 2010 | B2 |
7822414 | Bender et al. | Oct 2010 | B2 |
7887583 | Macoviak | Feb 2011 | B2 |
7896913 | Damm et al. | Mar 2011 | B2 |
7947072 | Yang et al. | May 2011 | B2 |
7951197 | Lane et al. | May 2011 | B2 |
7967857 | Lane | Jun 2011 | B2 |
7972377 | Lane | Jul 2011 | B2 |
7989157 | Cunanan et al. | Aug 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8246675 | Zegdi | Aug 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8449625 | Campbell et al. | May 2013 | B2 |
8500798 | Rowe et al. | Aug 2013 | B2 |
8821569 | Gurskis et al. | Sep 2014 | B2 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20020026238 | Lane et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020188348 | DiMatteo et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030149478 | Figuiia et al. | Aug 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030191416 | Rosenman et al. | Oct 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040122516 | Fogarty et al. | Jun 2004 | A1 |
20040167573 | Williamson et al. | Aug 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040206363 | McCarthy et al. | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215235 | Jackson et al. | Oct 2004 | A1 |
20040225355 | Stevens | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20040237321 | Rudko | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043760 | Fogarty et al. | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050065594 | DiMatteo et al. | Mar 2005 | A1 |
20050065614 | Stinson | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050165479 | Drews et al. | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050192665 | Spenser et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050251252 | Stobie | Nov 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060064039 | Griego | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060122634 | Ino et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060195186 | Drews et al. | Aug 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060271172 | Tehrani | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070016285 | Lane et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070078509 | Lotfy | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070150053 | Gurskis et al. | Jun 2007 | A1 |
20070156233 | Kapadia et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070225801 | Drews et al. | Sep 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265701 | Gurskis et al. | Nov 2007 | A1 |
20070270944 | Bergheim et al. | Nov 2007 | A1 |
20070299513 | Ryan et al. | Dec 2007 | A1 |
20080009746 | Forster et al. | Jan 2008 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080119875 | Ino et al. | May 2008 | A1 |
20080167713 | Bolling | Jul 2008 | A1 |
20080281232 | Lansac | Nov 2008 | A1 |
20090036903 | Ino et al. | Feb 2009 | A1 |
20090069890 | Suri et al. | Mar 2009 | A1 |
20090132036 | Navia | May 2009 | A1 |
20090182419 | Bolling | Jul 2009 | A1 |
20090192600 | Ryan | Jul 2009 | A1 |
20090192603 | Kuehn | Jul 2009 | A1 |
20090192604 | Gloss | Jul 2009 | A1 |
20100152844 | Couetil | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
0084395 | Jul 1983 | EP |
0096721 | Dec 1983 | EP |
0125393 | Nov 1984 | EP |
0143246 | Jun 1985 | EP |
0179562 | Apr 1986 | EP |
1171059 | Jan 2002 | EP |
2080474 | Jul 2009 | EP |
2056023 | Mar 1981 | GB |
2 069 843 | Sep 1981 | GB |
2137499 | Oct 1984 | GB |
2254254 | Oct 1992 | GB |
2 279 134 | Dec 1994 | GB |
1116573 | Jul 1985 | SU |
8900084 | Jan 1989 | WO |
9115167 | Oct 1991 | WO |
9201269 | Jan 1992 | WO |
9213502 | Aug 1992 | WO |
9219184 | Nov 1992 | WO |
9219185 | Nov 1992 | WO |
9528899 | Nov 1995 | WO |
9709933 | Mar 1997 | WO |
9709944 | Mar 1997 | WO |
9727799 | Aug 1997 | WO |
9915112 | Apr 1999 | WO |
0060995 | Oct 2000 | WO |
2006086135 | Aug 2006 | WO |
2010090720 | Aug 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20190209048 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15462386 | Mar 2017 | US |
Child | 16356412 | US | |
Parent | 13762232 | Feb 2013 | US |
Child | 15462386 | US | |
Parent | 12606945 | Oct 2009 | US |
Child | 13762232 | US |