1. Technical Field
The present disclosure relates to devices for measuring eccentricity, and particularly, to a device for measuring eccentricity of a lens.
2. Description of Related Art
Currently, digital camera modules are used in a wide variety of portable electronic devices, and in stand-alone digital camera units. Measurement of the eccentricity of a lens is an important parameter influencing imaging quality of a digital camera module.
In measuring the eccentricity of a lens, a measuring device is often used. The measuring device includes a supporting table, a microscope, and an image sensor. In use, first, an optical module is positioned on a center of the supporting table. The supporting table is then rotated manually together with the optical module. The eccentricity of the optical module is then observed through the microscope during the rotation of the optical module. However, because sizes of the lens vary, different devices are required. Thus, the procedure is slow and cumbersome to determine eccentricity of the optical module.
Therefore, a device for measuring eccentricity of a lens is desired to overcome the limitations described.
Many aspects of the present device can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present apparatus for assembling a machine tool. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The support portion 20 includes gear teeth 202, and a first through hole 206. The gear teeth 202 are positioned on a circular edge of the support portion 20. The first through hole 206 is defined in the support portion 20. The first through hole 206 includes a first end opening 2062 and a second end opening 2064. The first end opening 2062 supports the lens 10 thereon.
The eccentricity detector 30 is positioned above the lens 10, to measure eccentricity of the lens 10.
The driving device 40 includes a driving mechanism 402 and a motor 404. The driving mechanism 402 may be, for example, a gearwheel or a gear rack. In the illustrated embodiment, a driving mechanism 402 is shown as the gearwheel. The motor 404 rotates the driving mechanism 402. The driving mechanism 402 cooperates with the gear teeth 202 of the support portion 20 to rotate the support portion 20.
The vacuum absorption device 50 includes an air pipe 502 and a vacuum generation element 504. In the illustrated embodiment, the rotatable pole 80 defines a second through hole 806 connecting to the second end opening 2064 of the first through hole 206. The air pipe 502 is received in the first through hole 206 and the second through hole 806. When the lens 10 is to be fixed, the vacuum generation element 504 removes air from the air pipe 502, fixing the bottom of the lens 10 in the support portion 20 by vacuum force. The vacuum generation element 504 adjusts degree of vacuum with variations in size of the lens 10.
The clamping device 60 includes a first clamping element 602 and a second clamping element 604. In the illustrated embodiment, the first clamping element 602 is V-shaped. The first clamping element 602 contacts the lens 10 at two points. The second clamping element 604 may be a belt transmission element. The belt transmission element includes a driving wheel 6042 and a driven wheel 6044. The driven wheel 6044 contacts the lens 10 at one point. The first clamping element 602 cooperates with the second clamping element 604 to locate and fix the lens 10.
The support portion 20 is supported on the rotatable pole 80. In this embodiment, the rotatable pole 80 supports the center of the support portion 20, and the rotatable pole 80 is a hollow pole.
In use, the lens 10 is fixed on the support portion 20 by the vacuum absorption device 50 and the clamping device 60. The eccentricity detector 30 emits a cross-shaped light to a first center of curvature of the lens 10. Clamping device 60 is removed from the lens 10, and the motor 404 rotates the lens 10, cooperating with the support portion 20 and the driving mechanism 402. A rotation angle of the lens 10 can be 90 degrees (°), 180°, or 270°. The clamping device 60 fixes the lens 10 again, and the eccentricity detector 30 emits a cross-shaped light to a second center of curvature of the lens 10. The eccentricity detector 30 receives a changeable cross image because the lens 10 is rotating, and transfers the image to a process device (not shown). Finally, the process device analyzes the change of the image with the rotation of the motor 404, and obtains an eccentricity of the lens 10.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0306094 | Dec 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4383393 | Takubo | May 1983 | A |
5548396 | Morita et al. | Aug 1996 | A |
5768061 | Casey et al. | Jun 1998 | A |
5973772 | Fukuma et al. | Oct 1999 | A |
7880984 | Yen | Feb 2011 | B2 |
7986475 | Lin et al. | Jul 2011 | B2 |
20020034921 | Mizuno et al. | Mar 2002 | A1 |
20030214646 | Ito | Nov 2003 | A1 |
20040021951 | Maeda et al. | Feb 2004 | A1 |
20050111112 | Masuda | May 2005 | A1 |
20050264899 | Manabe | Dec 2005 | A1 |
20080189727 | Tanaka | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
1987348 | Jun 2007 | CN |
101276774 | Oct 2008 | CN |
Number | Date | Country | |
---|---|---|---|
20100142347 A1 | Jun 2010 | US |