The present invention relates to a device for monitoring and controlling a machine.
DE 199 56 961 A1 discloses a method for checking the effect of vibrations on the shaping and compacting of concrete articles which are produced in shock vibration finishers. For this purpose, measurement values of motion variables are recorded, which are correlated to the degree of compacting and/or the compacting time, and are recorded on the vibration finisher. The method makes it possible to compare nominal values and actual values recorded at reference points and to recognize deviations and to influence associated motion variables. The recording is done by acceleration sensors and measurement value processing associated with these.
DE 197 41 954 A1 discloses a method and a device for producing shaped concrete parts in which the intensity of vibration is dependent on the degree to which the mold is filled, and it is proposed to record the filling level of the mold by measuring the propagation time of waves emitted by a transmitter and reflected by the concrete filled in.
EP 1 064 131 B1 discloses a concrete compacting arrangement which comprises vibrating units which in each case generate a signal which corresponds to a vibration generated by the vibration generating device at the shell. This signal is forwarded to a controller through which a frequency converter is driven. It is also provided to connect the individual controllers to one another via data lines in order to provide mutual information exchange, and it is additionally proposed to couple a master computer to the data line so that each individual controller can be driven centrally.
DE 195 11 324 A1 discloses a method and a device for quality testing during the production of concrete bricks where the height of freshly produced concrete bricks is measured contactlessly here by means of distance measuring devices.
DE 44 00 839 A1 discloses a device for producing prefabricated concrete parts which has a number of vibrating frames. To achieve synchronous operation while avoiding the use of synchronizing shafts, sensor devices which are connected to an electronic control device are used in order to achieve synchronous vibration of at least two devices.
As a rule, the prior art only provides partial solutions which, in particular, are subject to interference with respect to the data transmission.
The present invention is based on the object of developing a device for monitoring and controlling a machine which has data acquisition suitable for hard environmental conditions.
In the device according to the present invention, data can be wirelessly exchanged via a radio link via transmitting and/or receiving devices between the sensors and an electronic control loop which forms an evaluating and control unit. The data comprise measurement variables such as, for example, frequency of vibration, amplitude of vibration, duration of vibration or pressing power with which the top part of the mold acts on the bottom part of the mold. In the case of a brick shaping machine, the recorded data also includes adjustment of the conglomerate such as, for example, the filling quantity, the moisture or the proportion of additives. The embodiment of the device according to the invention makes it possible to dispense with data lines which are very susceptible to interference under rough conditions, for example in the production of bricks, and which present great problems in feeding them, in particular, to a component which needs to be changed frequently, for example a mold device. Using sensors designed for data radio is advantageous, particularly also with respect to a component which has to be changed regularly, for example a mold device, since the sensor can also be used outside the mold device for logistical purposes, for example for recording the storage location of the mold device. Such a sensor can be used already during the production of the mold device for controlling or monitoring or documenting the production, respectively.
According to one aspect of the present invention, the sensor is equipped with its own power supply in order to dispense with the feeding in of power by this means, to eliminate another potential interference source and simplify the handling.
According to another aspect of the present invention, the sensor is equipped with a data memory for storing data determined by the respective sensor itself and/or data determined by another sensor. When a number of such sensors are used, redundant data storage is possible.
According to another aspect of the present invention, the sensor is equipped with a processor which handles the processing of data determined by the respective sensor itself and/or determined by another sensor. Equipping the sensors in this manner allows preprocessing of data, for example for reducing the volume of data which would have to be forwarded.
According to one aspect of the present invention, the sensor includes its own power source which, in particular, is constructed as a rechargeable battery. With such a configuration, proven standard components can be used which have long service lives.
It is also provided that the power source can be charged up by means of vibrations which are generated by the brick shaping machine during the brick production, and that a generator is used for this purpose. In this manner, a power supply occurring at regular intervals can be provided during the operation of the individual brick shaping machine.
In particular, the present invention provides a generator operating in accordance with the Faraday principle which comprises a piston freely oscillating in a cylinder. Such a generator is rugged and simple to produce.
According to another aspect of the present invention, the cylinder is aligned with the freely oscillating piston with its longitudinal axis in the main direction of vibration prevailing at the sensor. By this means, the available vibrational energy can be optimally utilized.
According to one embodiment of the present invention, the cylinder is automatically oriented in space under inertial control. A sensor having such a generator automatically adapts itself to the environmental conditions at the site of installation so that incorrect installation is impossible.
According to the present invention, the power source, particularly a battery, is charged contactlessly, particularly inductively. By this means, it is also possible to charge a sensor allocated to the mold device outside a brick shaping machine, for example in a store with high shelves or during transportation with a forklift truck.
The invention also provides for an exchange of data and, in particular, an exchange of internal and external data among the sensors. This makes it possible to form one or more radio chains for forwarding data.
It is also provided that the electronic control loop is integrated into the radio chain and thus to implement a starting point or an end point for the radio chains.
The present invention preferably uses a sensor, which adjusts its transmitting power to one or more of the neighboring sensors, which can be reached with the lowest transmitting power in order to load the power source as little as possible.
According to the present invention, the data received from a second sensor by means of the processor arranged in the sensor is checked on the basis of internal data and/or on the basis of the data received from a third sensor and to report the result. As a result, maladjustments and failures of individual sensors can be recognized and compensated for independently of the electronic control loop.
Finally, the present invention involves using sensors which provide for contactless measurement by means of rays or waves received or sent out and received. This makes it possible, for example, to dispense with the arrangement of a sensor on or in the mold device so that it is not required to retrofit older mold devices.
The present invention makes it possible to adapt the control of the brick shaping machine to the situations actually prevailing at the mold device and thus to optimally deal with each set of bricks in the brick shaping machine. In particular, this makes it possible to produce a uniform quality when starting up a brick shaping machine or in the case of changes in the characteristic or the composition of the conglomerate. The controlling of the brick shaping machine can include characteristic variables such as, for example, flexion, tension, frequency or acceleration of the mold device and/or of the conglomerate and these then effect, for example, a change in the frequency of vibration or the duration of vibration or the pressure with which the brick shaping machine acts on the mold device. Due to the wireless exchange of measurement and/or control data, complex and interfering cabling arrangements on the brick shaping machine or the mold device can be dispensed with. Arranging a sensor in the mold device makes it possible to attach the sensor in a protected manner and to allocate it unmistakably to a particular mold device. Furthermore, such accommodation of the sensor does not complicate a change of mold in an unwanted manner.
According to a particular embodiment of the present invention, the sensor is arranged separately from the mold device on the brick shaping machine, the sensor performing a contactless measurement of the characteristic variable to be observed in the mold device. For such a setup, controlling the brick shaping machine on the basis of characteristic variables of the mold device is possible even when conventional mold devices are used. Each brick shaping machine thus only requires the retrofitting of one sensor independently of the number of mold devices used.
Finally, the present invention also provides for the use of the device in vehicles for monitoring the service life of safety-related components and/or documenting their loads, for example. Since safety-related components are frequently subject to vibrational loads and cabling of safety-related components is also frequently associated with great problems, the device according to the present invention provides for an uncomplicated checking capability which can also be easily retrofitted. The spectrum of possible reactions to the evaluation of the measurement values extends from driving a warning lamp up to the controlling intervention in machine components such as, for example, avoiding loading peaks by means of control measures.
According to the present invention, at least two sensors are used at different components in order to be able to reliably diagnose wrong measurements or total failures.
Controllable machine components according to the present invention are understood to be machine components such as, for example, vibrators, hydraulic cylinders, pneumatic cylinders, dispensers, mixers, moisteners for the conglomerate, dryers for the conglomerate and the actuators described below.
Further details of the present invention will be described by means of exemplary embodiments shown diagrammatically in the drawing, in which:
a shows a bottom mold part with guy wires and sensors;
b shows a cut side view of
A device V comprises an electronic control device 11 with a transmitting and receiving device 12 for exchanging data with sensors 13 and 14. In this arrangement, the sensor 13 is arranged in the pressure plate 5 of the top mold part 4 and the sensor 14 is located in the bottom mold part 3. The measurement values determined by the sensors 13 and 14 are transmitted by transmitting and receiving devices 15 and 16, respectively, of the sensors 13 and 14 via the transmitting and receiving device 12 to the electronic control device 11. These data are evaluated by means of control algorithms and, if necessary, the frequency of vibration or duration of vibration of the vibrating table 9 or of the pressing power of the top mold part on the conglomerate is changed on initiation by the electronic control device 11. Furthermore, the electronic control loop 11 is connected to a sensor 17 by means of which, e.g. the temperature of the conglomerate 6 and the frequency of vibration of the bottom mold part 3 can be recorded by means of remote measurement.
a shows a top view of a bottom mold part 3 which has mold nests 7 in which a core 35 is arranged in each case. The cores 35 are attached on plates 37 of the bottom mold part 3 via four and three wire cables 36, respectively. In
The present invention is not restricted to exemplary embodiments shown or described. Rather it comprises developments of the invention covered by the patent claims. In particular, the present invention also provides for bidirectional communication between the electronic control device and the sensors. The device according to the present invention is also provided for use in a set of machines which consists of at least one brick shaping machine and at least one brick mold.
In addition, the invention provides for a realization of the embodiments described in the text which follows. The following embodiments are not restricted to the use of vibration meters but relate to the use of any type of sensors. It is provided to attach a number of vibration meters or sensors to the mold device.
The vibration meters or sensors can be attached to the individual assemblies of the mold device such as, e.g. the bottom mold part or top mold part but also to assemblies of the bottom mold part or top mold part such as, e.g. cores, partition walls or mold inserts or plunger plates. Furthermore, the attachment of sensors to components of the brick shaping machine is provided which are adjacent to the mold device. Furthermore, it is provided to control at least one adjustment of the brick shaping machine and at least one adjustment of the conglomerate by means of the electronic control loop. In principle, the electronic control loop can be formed by one or more special processors or by a computer with special software, wherein control signals and/or switching signals are conducted from the electronic control loop to corresponding actuators or controllers allocated to these.
The vibration meter or sensor assesses the structural constitution of the mold device in order to render a failure of the mold predictable.
The vibration meter or sensor is used for analyzing and evaluating the mold device in special test configurations.
The vibration meter or sensor is used for recording other values in the brick production process such as, for example, number of cycles and cycle times.
The vibration meter or sensor is used for adapting the vibration parameters to the vibratory characteristic of the mold device in order to selectively achieve the time of a superimposition of vibrations of vibrating table and mold device and to achieve a maximum of compaction with a minimum of energy introduced.
The control system according to the present invention allows uncontrolled vibrations to be avoided and amplitude and frequency to be checked and adapted selectively.
Overall, the control system according to the present invention leads to a reduction in cycle times and to an improved utilization of the energy of vibration.
Furthermore, sensors are provided which allow automated leveling of the components of the mold device and associated machine parts. According to the present invention, such monitoring can relate to the entire brick shaping machine and, particularly, to machine frame, machine foundation and machine components such as, e.g. ram plate, charging system, vibrating table etc.
With the sensors according to the present invention, measurement of the degree of moisture of the concrete conglomerate and/or of the temperature of the concrete conglomerate is also provided in order to derive from these optimum parameters for energy of vibration and times of vibration.
It is also provided to combine the vibration pickups or frequency pickups or sensors in groups and to have them monitor each other.
It is also provided to attach the sensor to the mold device by means of a magnetic clamp.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 019 729.6 | Apr 2004 | DE | national |
10 2005 017 707.7 | Apr 2005 | DE | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE05/00726 | Apr 2005 | US |
Child | 11582138 | Oct 2006 | US |