Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the present invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
The clamps 12 have a clamp mouth 16 that can be opened and closed by mechanical actuation. A leading first printed product 20 and a following second printed product 22 traveling in transport direction F are held together in the clamp mouth 16 between two clamp jaws 18. The printed products 20, 22 can be, for example, folded printed products such as newspapers and magazines, but also other single or multi-layer sheet products.
The printed products 20, 22 lie partially overlapped while forming overlap-free edge sections 24. In the embodiment shown in
A second side edge area 29 lying opposite the first side edge area 28 encompasses the free, to a certain extent also freely moving, end sections of the printed products 20, 22 including an overlap-free edge section 24 of the first printed product 20.
Three stationary sensors, namely a first sensor 32, a second sensor 34 and a third sensor 36 are arranged at a monitoring point 30. The first sensor 32 is a so-called “clamp sensor” and monitors an assigned reference area 38 represented by the dot-dashed line extended from it. As soon as a clamp 12 passes this reference area 38, the sensor triggers a first detection signal referred to as reference signal. This reference signal is transmitted further to an evaluation circuit 39 and serves to trigger a predetermined time interval during which a so-called second detection signal of the second sensor 34 and a so-called third detection signal of the third sensor 36 are detected.
The first sensor 32 can naturally thereby also be located at a greater distance upstream (relative to the transport direction F) of the second sensor 34 and the third sensor 36 than that shown in
The second sensor 34 is arranged such that its assigned detection area 40 is oriented to the second side edge area 29 that lies opposite the clamp 12, in particular to the lower overlap-free edge section 24 of the first printed product 20. With such an arrangement of the second sensor 34 below and distant from the transport organ 14, its installation and adjustment are very simple and possible with good accessibility.
If the overlap-free edge section 24 of the first printed product passes through the detection area 40 of the second sensor 34 within a time interval triggered by the reference signal of the first sensor 32, the second detection signal of this sensor 34 will be transmitted to the evaluation circuit 39 and the presence of the first printed product 20 registered. Should the overlap-free edge section 24 not pass the detection area 40 within the triggered time interval, no second detection signal will be transmitted to the evaluation circuit 39, and on expiry of the time interval the evaluation circuit 39 registers that the first printed product 20 was not present. The evaluation circuit 39 can then transmit control signals to downline processing devices so that special treatment of the clamp 12 not holding the first printed product 20 can be initiated.
In order to detect the presence of the second following printed product 22 in transport direction F, the third sensor 36 is oriented in such a way that its detection area 42 monitors the overlap-free edge section 24 of the second printed product 22 in the first side edge area 28. By analogy with the function of the second sensor 34, the third sensor 36 also transmits the third detection signal to the evaluation circuit 39 as soon as the second printed product 22 passes the detection area 42 within the triggered time interval. If the second printed product 22 is not detected because, for example, the second printed product 22 has not passed through the detection area 42 or the printed products 20, 22 are lying completely on top of one another at the position of the first printed product 20, an error will again be registered by the evaluation circuit 39 in this case and corresponding error handling procedures initiated.
With this embodiment, too, the first sensor 32 detects the passage of a clamp 12 through its reference area 38 and transmits its reference signal to the evaluation circuit 39, thereby triggering a time window in which second detection signals generated by the second sensor 34 can be registered. In this embodiment, a ramp-like deflection element 44, for example in the form of a supporting plate, is assigned to the second sensor 34.
The detection area 40 of the second sensor 34 extends as seen in transport direction F in the shadow of the deflection element 44. As the clamps 12 with the printed products 20, 22 approach, the second side edge area 29 of the printed products 20, 22 slides onto the deflection element 44. On passing a rear (as seen in transport direction F) deflection element edge 46 of the deflection element 44, the section of the first printed product 20 assigned to the second side edge area 29 swings through the detection area 40 of the second sensor 34. If the first printed product 20 is present and held in the correct position in the clamp 12, this is detected by the second sensor 34 which transmits a corresponding second detection signal to the evaluation circuit 39.
The second printed product 22 initially still sliding along the elevated deflection element 44 during the passage of the first printed product 20 through the detection area 40 of the second sensor 34 also swings through the detection area 40 of the second sensor 34 after passing over the deflection edge 46, thereby triggering a second detection signal for transmission to the evaluation circuit 39. If the evaluation circuit 39 does not register the two corresponding, temporally offset second detection signals of the second sensor 34 within the triggered time interval, for example because only one printed product 20, 22 was present in the clamp 12 or the printed products 20, 22 were lying completely on top of one another, an error state will again be detected and corresponding error handling procedures initiated.
With both embodiments of the monitoring device according to the invention described, it is possible to determine whether neither of the printed products, or just one or both of the printed products 20, 22 were present in a clamp 12 transported past the monitoring point 30. If only one printed product 20, 22 was present, then it is also possible to determine which printed product 20, 22 was missing and which was present, in the embodiment shown in
The diagram in
The time difference T between the respective earlier and later signal peaks corresponds at least roughly to the quotient of the distance between the clamps 12 and their transport speed v, insofar as the two parameters remain constant between the passage through the detection area 40. The time interval W also plotted in the diagram indicates a time window triggered by the reference signal during which the second detection signals of the second sensor 34 are expected with complete filling of the clamps with printed products 20, 22 and during which they are acquired or taken into consideration by the evaluation circuit 39.
The signal sizes of the signal peaks assigned in each case to the first printed product 20 and the second printed product 22 respectively differ, as due to the mutually offset position of the printed products 20, 22 sections of the detection area 40 of the second sensor 34 of different size are covered by the printed products 20, 22. Conversely, the signal size allows the holding of the printed products 20, 22 in the correct position in the clamps 12 to be assessed.
The sensors 32, 34, 36 are preferably designed as very inexpensive, contact-free, optical sensors, for example optical proximity sensors, light barriers, etc., or as mechanical sensors. However, the use of image recording devices such as digital cameras with recording being triggered after the clamp passage or continuously during a triggered time interval as sensors 32, 34, 36 is also possible. In particular the first sensor 32 for detection of the clamps 12 can, however, also be designed as a mechanical, capacitive or inductive proximity switch.
In practice, both the reference area 38 and the detection areas 40 and 42 frequently do not have a linear form and may have a spatial range, depending on the sensor type used. The fact that the reference area 38 or the detection areas 40, 42 also detect overlapping sections of the printed products 20, 22 during the detection of the passage of overlap-free edge sections 24 of the printed products 20, 22 has no major significance for the monitoring device according to the invention, but can—as already mentioned above—also be used to determine whether the printed products are held in the correct position in the clamps.
Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | Kind |
---|---|---|---|
00756/06 | May 2006 | CH | national |