The present invention concerns a means of suspending a rotating implement as described in the preamble to claim 1. The invention concerns also a rotator as described in the preamble to claim 9 and a device for crane-mounted implements as described in the preamble to claim 22.
Crane-mounted rotatable implements such as tree processing units or log grapples are carried by a crane arm for rotating around a first pivot axis comprising the centre or main axis of the implement and at least one other pivot axis relative to the crane arm. This second pivot axis normally comprises one hinged link between the implement and the crane arm. To execute the s aid p ivoting m ovement a round the first p ivot axis, there i s a rotator arranged between the implement and the crane arm. Using a swivel coupling in the rotator, a hydraulic medium can be transferred between the crane arm and a hydraulically acting driving means in the rotator and, where appropriate, also between the crane arm and other consumers included in the implement. The driving means in a conventional rotator consumer is served, i.e. supplied with and e vacuated o f a hydraulic m edium, v ia l ines c omprising a s et o f flexible hoses, which, originating from the crane arm in the form of a bunch of hoses hanging outside and at a distance from the implement's hinged links with the crane arm, are attached to the top of the rotator via protruding angled unions. In the pivot pin contained in a rotator are arranged passages running axially, which are in fluidal connection with radial passages running through the wall of a housing surrounding the pivot pin. In known rotators and associated swivel couplings, the housing is the part that is linked to the end of the crane arm, while the pivoted pin in the housing is the part that is linked to the implement. For reasons that are easy to appreciate and mentioned in the foregoing, the connecting unions at the upper end of the rotator to which the pairs of hoses outgoing from the crane arm are connected will extend radially or at an angle from the outside of the swivel coupling's essentially cylinder-shaped housing. The connecting unions at the bottom of the rotator for the pairs of hoses outgoing from the rotator extend in the axial direction of the pivot pin straight down from its flat bottom or end face.
It should also be understood that the hydraulic lines connected to the connecting unions on the upper end of the rotator will for design reasons extend radially from the housing. By means of a certain degree of slackness or excess, the said hydraulic lines connected to the upper end of the rotator will bend away from the hinged link between the implement and the crane arm in so far as they will run clear of and be at such a distance from the said link connections that they will not risk being pinched during the operational movement of the implement. Meanwhile, hydraulic lines or hoses have tended to swing to and fro in an uncontrolled manner during the movement of the implement and sometimes come in contact with tree trunks, wooden stanchions or other objects in the vicinity of the implement and the working range of the crane arm, which can lead to hose failure or other similar damage. Should the occasion arise, not only must the implement undergo costly service with subsequent down-time and reduction in production of the forestry machine as a result but also the hydraulic oil that escapes after, for example, a hose failure will harm the environment.
One object of the present invention is therefore to achieve a means of suspension of an implement of the aforesaid type that does not exhibit the said disadvantages but is so constructed t hat t he flexible h ydraulic l ines b etween t he c rane and t he i mplement a re w ell protected and cannot swing in an uncontrolled manner during the operational movement of the implement and/or crane arm.
A further object is to achieve a rotator that is designed so that the normally occurring radially protruding connecting unions on the top end of the rotator or its housing can be avoided and thereby the hydraulic lines extending between the crane arm and the implement can be positioned more centrally to the link connections between the implement and the crane arm.
A third object of the invention is to achieve a combination of units for crane- mounted rotatable implements whereby all the aforesaid problems have been eliminated.
This can be achieved with the distinctive features and characteristics specified in the following claims.
The following is a description of this invention with references to attached drawings, where
In the figures, a crane arm is designated 1 and an implement, which in this case comprises an implement with a means of gripping the tree 3, that can rotate relative to the crane arm is designated 2. The implement 2 is suspended from the free end of the crane arm via a rotator 4, one end of which is linked to the crane arm 1 with an attaching part 5 and the other end of which is rotatable via a pivot bearing 6 in the implement frame 7 for rotating around a first pivot axis A. The rotator 4 allows the implement to be rotated around the pivot axis A and thereby around its own axis as is illustrated with the arrow loop in
Referring to
The rotation and centre axes of pivot bearing 6 and swivel pin 9 are coaxial with the first pivot axis A. The delivery and -evacuation of hydraulic fluid to the rotator 4 and the additional consumers of the implement 2 is done through a first and second pair of flexible lines 13 that, originating from the crane arm I and extending downwards, are connected to one end of the rotator 4. From the other end of the rotator is a pair of lines 14 (in the figure only indicated with dashed lines) that are connected to the rotator's 4 means of driving 12 and other consumers respectively. The said flexible pair of lines 13 running along the crane arm are connected in a conventional way to a pump and tank respectively on a vehicle (not shown) that is carrying the crane arm in question. The aforesaid components comprising the rotator 4 and swivel coupling 11 are arranged to the frame 7 included in the implement 2.
Although this example of a mounting arrangement is illustrated and described for connection to a conventional grapple unit for trees, it should also be understood that the principle for the same nonetheless can be used in combination with any other type of crane-mounted implement such as a felling head with chain saw guide bar intended for a forestry machine or similar.
The unit's two means of gripping 3 are pivot mounted in a conventional manner with pins 15 arranged in the frame and each comprises a shank on each side of a line of symmetry through the stand coinciding with the centre axis A.
Referring to
As illustrated in
The link 8 is designed as a hollow beam or box and therefore exhibits an axial hole running through it, whereby, as illustrated in the figures, the respective pairs of lines 13 leading from the crane arm extend through the relative pivot centres B and C respectively of the hinged parts 1, 2, 8, via the inner cavity of the link. Through the resulting open design of the hinged links, the pairs of hydraulic lines 13 extending between the crane arm I and the unit 2 can be placed in close proximity to the pivot axis A and in principle so that the pairs of lines cut the axis. Extending through the pivot centres B, C of the relative hinged parts and the link 8 cavity respectively, the flexible hydraulic lines are both well protected during the movement of the unit and connected to the rotator in close proximity of the pivot axis A and in principle arranged in a circle around the said first pivot axis A. By this arrangement, the hydraulic lines are exerted to only minimal strain from bending and twisting movements also in the case where the implement 2 is operated between its endmost positions.
In this illustrated embodiment, the crane arm 1 is of telescopic type comprising two telescopically interposed boom-like parts 36, 37.
Referring to
Unlike conventional rotators 4 in which the housing 10 is normally joined to the crane arm 1 and is fitted with unions protruding radially towards the pivot axis A for connecting the pairs of lines 13 coming from the crane arm, and the swivel pin 9 can be joined to the implement 2 and is fitted with unions protruding downwards parallel with the pivot axis A for connecting the pair of lines14 coming from the rotator, the present rotator 4 is so designed that it can be mounted in the corresponding way or in the opposite direction. That is to say, that the swivel pin 9 can be joined to the crane arm 1 via the rotator's 4 attaching part 5 and the housing 10 can be joined to the implement's 2 frame 7. As best illustrated in
The swivel and slip-ring unit 57 comprises a stator 59 and a rotor 60 with a number of inter-rotating contact paths of ring-shaped tracks 61 with slip rings 62 running in them. The stator 59 comprises a flange ring upper part 63 fastened with bolts 64 to a flat 65 shoulder made in the transition between the outer and the inner chambers 55, 56. The rotor 60 comprises a flange ring lower part 66 fastened with bolts 67 to a casing 68 used to cover the end of the swivel pin 9. The said casing 68 is in turn detachably mounted with bolts 69 to the rotator 4 housing 10. The casing 68 has an opening 70 through which a strand 71 of a cable from the implement 2 extends and to which opening the strand is secured with a means of load relief 72. The individual conductors 73 in the said strand 71 of the cable are in contact with the connecting or contact points 74 of the rotator part 60.
One interesting distinctive feather of the present invention is that one of the axial drillings 41, which is normally used to supply a consumer with hydraulic medium via a swivel coupling 11, in combination with the diagonally arranged passage 58 is used as a lead-through for a strand 75 of a cable from the crane arm 1. To be precise, the strand 75 forms part of the wiring that is in connection with the control system for the implement that is situated in the vehicle carrying the crane arm 1. The individual conductors 75 of the cable are in contact with the connecting or contact points 77 of the stator 59.
In order to both protect the wiring from chafing and to make the cables exhibit characteristics that are essentially comparable to the hydraulic-conveying lines, the hydraulic lines are utilised as through passages for the wiring, whereby such a line can be suitably connected to one of the protruding connecting unions 47. Contrary to known technology in which the cables are arranged hanging in bunches so as to go clear of the link connection between the top of the crane and the implement, a uniform and very elegant routing of the hydraulic lines and wiring through the centre of the hinge connection is obtained hereby.
The present invention is not limited to the above description or as illustrated in the drawings but can be changed and modified in a number of different ways within the framework of the idea of invention specified in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0103935.3 | Nov 2001 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE02/02117 | 11/21/2002 | WO |