This application is a national stage filing based upon International PCT Application No. PCT/AT2017/060303, filed 17 Nov. 2017, which claims the benefit of priority to Austria application No. A 51192/2016, filed 29 Dec. 2016.
The invention relates to a device for moving a tongue rail of a switch, having at least two rollers arranged one behind the other and essentially parallel to the rail course, on which the tongue rail can roll up from a lower contact position on the stock rail and directly in front of the first roller onto the first roller, and can roll on to the further rollers until it reaches a remote position.
Devices for moving tongue rails of switches must be able to transport the tongue rail sufficiently far at points of the switch to enable a rail vehicle to drive over it safely. However, the movement of the tongue rail must be as low-friction as possible in order to prevent unnecessary wear. At the same time, large forces act on the rails when heavy vehicles are driven over, which is why it is important to ensure that the switch as a whole and especially a device for moving tongue rails are designed as robust as possible. For this reason, systems have already been developed which have roller arrangements which require the tongue rail to be rolled up from the lower contact position adjacent to the stock rail, so that it can be transported away from the stock rail on the rollers.
From the US 2002/0079634 A1 a device is known, which has tiltable rollers, which enables a rolling up of the tongue rail. After rolling up, the tongue rail is guided on further rollers. Systems of this type, however, have the problem of high maintenance costs, as they are quite complicated in structure. In addition, they are very susceptible to errors due to the weather, as dirt and icing can occur despite tight maintenance and monitoring.
A further problem of already known solutions is the safe transport of the tongue rail, even with small foot widths. If the profile of the tongue rail is very narrow, as for example with rails according to the American AREMA standard, the rail can sink between the rollers, rub against the surface and cause undesirable wear and disturbances.
Solutions are known from the DE 102007 038 653 A1 and the JP 2003 34248 A, which enable rolling up directly onto an adjacent large roll. Several rollers are provided, which are arranged offset to each other so that a sinking between the rollers is prevented. However, by displacing the rollers, these solutions cause a torque to act on the device, which represents an additional load. The resulting shortened period of use is disadvantageous. In addition, the resulting increase in overall width can lead to problems with the arrangement of the device between two sleepers.
It is therefore the object of the present invention to overcome the described problems and to provide a device for moving a tongue rail of a switch, which at the same time ensures the smoothest possible movement of the tongue rail while being as robust as possible, in particular preventing the tongue rail from sinking, and which is loaded as little as possible during its use in order to achieve the longest possible and low-maintenance service life.
This is solved in accordance with the invention by providing at least one further intermediate roller, which is smaller than the rollers, in the space between two adjacent rollers, wherein the axis of rotation is essentially parallel to the axes of rotation of the rollers.
On the one hand, the introduction of smaller intermediate rollers between the rollers prevents unnecessary torque loads from acting on the device. On the other hand, the roller size of the rollers can be selected so large that it can be rolled up as easily and frictionlessly as possible without running the risk of the tongue rail sitting between the rollers. The linear design also makes the device more compact and less complex, as the retaining devices for the rollers can be combined.
The rollers and intermediate rollers can be arranged in different positions relative to each other. Thus, the highest points of the shells of the rollers and the intermediate rollers can be at the same height, in order to facilitate the lightest possible rolling of the tongue rail. However, it can be particularly advantageous to arrange the intermediate rollers relative to the rollers in such a way that the highest point of the intermediate roller shell is slightly below the highest points of the roller shell. This can be particularly important if the rollers have different designs and different elasticities as a result.
If the rollers, especially the first roller, are designed as elastomer-sprung rollers, this optimizes the movement of the tongue rail on the rollers and also the rolling up. The suspension reduces the wear of the rollers and the tongue rail, at the same time suspension by the elastomer layer provides a mechanical solution that is as compact as possible, less prone to faults and low in maintenance. Such an elastomer suspension can be realized, for example, by a roller which has a hub made of preferably less elastic, stable material, therefore an inner elastomer layer and an outer thin metal layer. The latter metal layer prevents damage to the elastomer layer by rolling on or rolling over the roller or intermediate roller. However, all or parts of the rollers and intermediate rollers can also be made of other materials or entirely of metal.
Particularly noteworthy is the possibility of designing the rollers as elastomer-sprung rollers and making the intermediate rollers available in low-elastic material such as steel. This makes it easy to roll up and move along the rollers without friction. This is particularly advantageous if the intermediate rollers, as described above, do not form a roller plane of the same height with the rollers, but are slightly offset downwards in relation to them. This is because even if the elastomer-sprung rollers are slightly deformed while the tongue rail is rolling on them, there is no undesirable slight rolling up onto the intermediate rollers, which could lead to material wear. The tongue rail is lowered slightly when rolling on the intermediate rollers, but this does not damage it, as it is easy to roll on to the next elastomer-sprung roller due to the small difference in height.
If rollers and intermediate rollers, or at least parts of them, are arranged on a common retaining device, this has advantages, in particular with regard to the easy manufacture of the device segments. In addition, the mechanical stability of the roller system is particularly well ensured. It is also advantageous if the retaining device consists of two laterally arranged parts, between which the rollers can be placed. This compact and simple, cost-saving design reveals a particularly inexpensive solution that is not prone to errors.
If the rollers are designed at least partially height-adjustable, the device can easily be adapted to the conditions on site or readjusted if necessary. This is particularly important as the height of the rollers must be optimized. On the one hand, they should be slightly higher relative to the bearing surface on which the tongue rail rests in the abutting position in order to prevent friction during rolling. On the other hand, it is advantageous to keep the described height difference between the roller level and the supporting surface small so that rolling onto the first roller is easily possible.
The solution of arranging the rollers and intermediate rollers on a common retaining device, which is height-adjustable, is particularly advantageous. This makes it possible to adjust the intermediate roller together with the setting of the other rollers, resulting in a particularly easy to use and easily adjustable solution.
The device can be attached to the switch in a variety of ways depending on the situation. Particularly noteworthy are the possibilities of fixing the device between two sleepers or attaching it to the stock rail.
Depending on the distance that the tongue rail must reach relative to the stock rail in the remote position, it may be advantageous to arrange a further intermediate roller distal to the stock rail after the last roller in order to further increase the maximum achievable rolling distance.
In the following, the present invention will be explained in more detail by reference to the embodiment variants depicted in the figures, wherein:
In
Number | Date | Country | Kind |
---|---|---|---|
A 51192/2016 | Dec 2016 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2017/060303 | 11/17/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/119483 | 7/5/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5501418 | Humphrey | Mar 1996 | A |
7766283 | Lesemann | Aug 2010 | B2 |
20020079634 | Lesemann | Jun 2002 | A1 |
20080087773 | Meyer | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
102005032417 | Jan 2007 | DE |
102014212074 | Dec 2015 | DE |
0964100 | Dec 1999 | EP |
2995718 | Mar 2016 | EP |
2003034248 | Feb 2003 | JP |
2007332696 | Dec 2007 | JP |
20120066440 | Jun 2012 | KR |
Number | Date | Country | |
---|---|---|---|
20200385933 A1 | Dec 2020 | US |