Device for obstruction removal with specific tip structure

Abstract
In one aspect, the present invention is a system for preparing a patient for an endoscopy procedure, such as a colonoscopy. The endoscopic preparation and examination system includes an endoscope, a source of irrigation and aspiration, and a control unit. The endoscope includes an elongated flexible shaft with a distal tip and a proximal end, at least one aspiration lumen and at least one irrigation lumen. A plurality of irrigation ports are functionally connected to the at least one irrigation lumen and a plurality of aspiration ports are functionally connected to the at least one aspiration lumen. In another aspect, the invention provides a method of clearing an obstructed view in a patient prior to, or during an endoscopic examination.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices in general and to medical devices for obstruction removal and patient examination in particular.


BACKGROUND OF THE INVENTION

It has become well established that there are major public health benefits from regular endoscopic examinations of patients' internal structures such as the alimentary and excretory canals. In any endoscopic procedure, there is always a need for the introduction and evacuation of different types of fluids, such as water, saline, drugs, contrast material, dyes, or emulsifiers. One such endoscopic procedure is a colonoscopy, which is an internal examination of the colon by means of an instrument called a colonoscope. A standard colonoscope is typically 135-185 cm in length and 12-13 mm in diameter and includes a fiber optic imaging bundle, illumination fibers, and an instrument or working channel that may be used for the delivery of tools into the patient and the vacuum evacuation of liquids. The colonoscope is inserted into the colon via the patient's anus and is advanced through the colon, allowing direct visual examination of the colon wall, the ileocecal valve, and portions of the terminal ileum. Approximately six million colonoscopies are performed each year.


In colonoscopic procedures, clear visualization of the entire colon, cecum and rectum is required for the procedure to be effective and efficient. It is estimated that about 20% of all colon polyps in patients are undetected due to low visibility, which can arise from poor colon preparation. Presently, about 10% of all colonoscopy patients are non-compliant with prescribed preparatory procedures and approximately 4% of all patients are unable to complete the exam due to an excess of stool in the colon. The remaining 6% are considered marginal, and the colonoscopy may still be performed if the colon is further evacuated as a part of the procedure. Conventionally, the marginal colons are cleared by repeatedly administering several small (e.g. 60 cc) fluid flushes through an endoscope's working channel by means of an ancillary apparatus that employs a low-volume wash and suction. The waste slurry is then removed with suction through the working channel in the endoscope. This tedious and inefficient process is limited by the amount of stool that can be removed with each flush. The process also causes a loss of productivity due to the added time required to fully evacuate the colon.


Conventional endoscopes are expensive hand-assembled medical devices costing in the range of approximately $25,000 for an endoscope, and much more for the associated operator console. Because of the expense, these endoscopes are built to withstand repeated disinfections and use upon many patients. Conventional endoscopes are generally built of strong composite materials, which decrease the flexibility of the endoscope and thus can compromise patient comfort. Furthermore, conventional endoscopes are complex and fragile instruments that frequently need expensive repair as a result of damage during use or during a disinfection procedure. A problem encountered with conventional endoscopes is the difficulty of sterilization between procedures. Sterilization of endoscopes may be accomplished with an autoclave, however, this tends to be harmful to the polymer components of the probe. Chemical bath sterilization may be used, however, this method cannot ensure complete removal of biological material that may become trapped within the channels of the endoscope probe.


Low cost, disposable medical devices designated for a single use have become popular for instruments that are difficult to sterilize or clean properly. Single use, disposable devices are packaged in sterile wrappers to avoid the risk of pathogenic cross-contamination of diseases such as HIV, hepatitis and other pathogens. Hospitals generally welcome the convenience of single use disposable products because they no longer have to be concerned with product age, overuse, breakage, malfunction and sterilization. One medical device that has not previously been inexpensive enough to be considered truly disposable is the endoscope, such as a colonoscope, ureteroscope, gastroscope, bronchoscope, duodenoscope, etc. Such a single-use or disposable endoscope is described in U.S. patent application Ser. No. 10/406,149 filed Apr. 1, 2003, Ser. No. 10/811,781, filed Mar. 29, 2004, and Ser. No. 10/956,007, filed Sep. 30, 2004, all assigned to Scimed Life Systems, Inc./Boston Scientific Scimed, Inc., which are incorporated herein by reference.


To overcome these and other problems, there is a need for a way to perform an irrigation and evacuation process prior to and/or during an endoscopy procedure upon poorly prepared or non-prepared patients, by use of an endoscope that is capable of preparing the patient and optionally also examining the patient. The endoscope can be reusable, or designed as a low cost endoscope that can be used for a single procedure and thrown away. The preparation and examination endoscope should be simple and easy to use in order to efficiently prepare patients for a colonoscopy procedure.


SUMMARY OF THE INVENTION

To address these and other problems, the present invention is an endoscopic preparation system that includes an endoscope, a source of irrigation and aspiration, and a control unit. In one embodiment, the preparation system comprises an endoscope that is capable of both patient preparation and examination. The endoscope includes an elongated flexible shaft with a distal tip and a proximal end, at least one aspiration lumen and at least one irrigation lumen. A plurality of irrigation ports are functionally connected to the irrigation lumen. The endoscope is removably connected to the source of irrigation and aspiration that are selectively controlled by the control unit to deliver an irrigant through the irrigation lumen and to aspirate the irrigant and other material through the aspiration lumen. In another embodiment, the system comprises a first preparation-specific endoscope and a second imaging endoscope that are each removably connected to a control unit.


In one embodiment, an excising device is disposed in the distal tip of the endoscope. The excising device is capable of mechanically cutting and/or disrupting an obstruction for aspiration in a patient.


In another embodiment, the endoscope includes a trapping device disposed in the distal tip. The trapping device is capable of trapping liquefied or disrupted material to be removed and/or aspirated from a subject.


In another aspect, the present invention is a method of removing an obstruction from a patient prior to, or during an examination. The method involves detecting an obstruction with an imaging endoscope, executing a wash routine comprising irrigation and aspiration of the material forming the obstruction, detecting the removal of the obstruction, optionally examining the patient, removing the endoscope from the patient and optionally disposing of the imaging endoscope. The method is executed with an imaging endoscope comprising at least one irrigation lumen and at least one aspiration lumen.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a block diagram of an endoscopic preparation and examination system comprising an endoscope with a handheld controller, a fluid/suction assembly and an operator console in accordance with an embodiment of the invention;



FIG. 2 is a block diagram of an endoscopic preparation and examination system comprising an endoscope, a fluid/suction assembly and an operator console in accordance with another embodiment of the invention;



FIG. 3A is a perspective view showing a representative distal tip of an endoscope comprising a plurality of aspiration ports and a plurality of irrigation ports, in accordance with an embodiment of the invention;



FIG. 3B is a perspective view showing a representative distal tip of an endoscope comprising a plurality of aspiration ports and a plurality of lateral irrigation ports, in accordance with an embodiment of the invention;



FIG. 4 illustrates the main features of an endoscope distal tip comprising an aspiration lumen containing an excising device in the form of a cutting blade structure in accordance with another embodiment of the invention;



FIG. 5A illustrates the main features of an endoscope distal tip comprising a working channel port and an aspiration port including an excising device in accordance with another embodiment of the invention;



FIG. 5B shows a cross-sectional view along the longitudinal axis, of the aspiration lumen of the distal tip shown in FIG. 5A, illustrating more detail of the excising device, in accordance with an embodiment of the invention;



FIG. 6A illustrates one embodiment of a trapping device disposed within a distal tip of an endoscope, in accordance with an embodiment of the invention;



FIG. 6B illustrates an embodiment of the trapping device comprising an expandable and retractable distal portion; and



FIG. 7 is a flow diagram of a method of performing an irrigation and aspiration process with an endoscopic preparation and examination system in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

As indicated above, the present invention is an endoscopic preparation system that provides integrated irrigation and aspiration functions for preparing and optionally examining poorly prepared patients. Although the present invention is described with respect to its use within the colon, it will be appreciated that the invention can be used in any body cavity that may require preparation for examination or surgery. While the invention is described in terms of a preparatory and examination system and apparatus, it will be understood by one of skill in the art that in some embodiments, the endoscope having the features described for obstruction removal is a multifunctional device that may also be used for a variety of different diagnostic and interventional procedures, including colonoscopy, upper endoscopy, bronchoscopy, thoracoscopy, laparoscopy, and video endoscopy, etc. In one embodiment, the endoscope is designed as a preparation-specific endoscope designed for preparing a patient for a procedure such as a colonoscopy.


The various embodiments of the endoscope described herein may be used with both reusable and low cost, disposable endoscopes, such as an endoscope that is sufficiently inexpensive to manufacture such that it can be a single-use device as described in U.S. patent application Ser. No. 10/406,149 filed Apr. 1, 2003, U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and Ser. No. 10/956,007, filed Sep. 30, 2004, that are assigned to Scimed Life Systems, Inc., now Boston Scientific Scimed, Inc, and are hereby incorporated by reference.



FIG. 1 illustrates the major components of an exemplary endoscopic preparation and optional examination system 100. The endoscopic preparation and examination system 100 includes an endoscope 110 that is electrically and fluidly connected to a fluid/suction assembly 120 and to an operator console 130. The endoscope 110 includes a distal shaft 112 with an articulating distal tip, a handheld controller 114, and a proximal shaft 116. The fluid/suction assembly 120 includes a vacuum pump 122, and an in-line suction canister 124 to aspirate liquid/debris from a patient. A fluid source 126 and a fluid pump 128 deliver fluids to the patient. The fluid/suction assembly 120 is electrically connected to the operator console 130. The operator console 130 includes a system controller 132 and is connected to a user interface 134 and a display unit 136.


The fluid/suction assembly 120 is generally described as a special-purpose electro-mechanical apparatus that provides a source of irrigation and aspiration for the endoscopic preparation and examination system 100. As indicated above, the fluid/suction assembly 120 includes a vacuum pump 122 for aspiration, which provides vacuum pressure for a collection device, such as, for example, the suction canister 124. The suction canister 124 may be any suitable waste container capable of holding aspirated material (e.g., fecal matter, bodily fluids, extracted tissue and the like). For example, one such suitable container is a standard container for medical waste that can hold approximately one to four liters (1-4 L) of aspirated material. The fluid/suction assembly 120 further includes a fluid source 126, such as a fluid reservoir or other fluid supply apparatus. The suction canister 124 is typically sized to hold at least two or more times the volume of the fluid source 126. In one exemplary embodiment, the fluid source 126 is capable of holding at least from about one to two liters (1-2 L) of irrigation fluids, such as saline solution, lubricating solution and the like. The fluid pump 128 included in the fluid/suction assembly 120 is capable of delivering a flow rate suitable for irrigation of a body lumen, such as a colon. The fluid/suction assembly 120 includes valves that control the delivery of fluids to the endoscope 110 and a vacuum line that removes fluids and/or debris from the patient.


In some embodiments of the endoscopic preparation and examination system 100, the fluid/suction assembly 120 is removably disposed within a housing of the operator console 130. In other embodiments of the endoscopic preparation and examination system 100, one or more components of the fluid/suction assembly 120 are located externally to the operator console 130. In some embodiments, one or more components of the fluid/suction assembly 120 are made of low cost materials and are intended to be disposed of after a single use.


The operator console 130 is a special-purpose electronic and electro-mechanical apparatus that facilitates, processes and manages all functions of the endoscopic preparation and examination system 100. The operator console 130 includes an image processing CPU, an electrical connection to the endoscope 110, a connection to the user interface 134, and a connection to the fluid/suction assembly 120. The operator console 130 manages the operation of the pumps, including the vacuum pump 122 and the fluid pump 128 of the fluid/suction assembly 120 as well as managing the operation of the valves that control the fluid delivery to the endoscope 110 and the vacuum line that removes the fluid and debris from the patient. The operator console 130 is loaded with software for managing the operation of the endoscope 110 and its associated imaging electronics (not shown) to create and/or transfer images received from an image sensor at the distal end of the endoscope 110, to the display unit 136 for viewing by a user.


In the embodiment of the endoscopic preparation and examination system 100 shown in FIG. 1, the handheld controller 114 is a device that is electrically and fluidly connected to the distal shaft 112 and the proximal shaft 116 of the endoscope 112. The proximal shaft 116 carries the electrical and fluid connections to the fluid/suction assembly 120. The handheld controller 114 accepts user input via standard activation devices, such as, for example, push buttons, switches, rotary knobs, joysticks, keyboard, touch screen, or other activation devices, either singularly or in combination, to control the operation of the endoscope probe and to control the articulation of the distal tip via control wires (not shown).



FIG. 2 illustrates the major components of an alternative embodiment of an endoscopic preparation and examination system 150. The major features of the system 150 are substantially similar to the system 100 described above, with the addition of a connector 140 that functionally and electrically connects the proximal shaft 116 of the endoscope 110 to the fluid/suction assembly 120 and to the operator console 130 in order to carry fluid, suction, and control signals to the endoscope 110. In some embodiments of the system 150, the connector 140 is made of low cost materials and is intended to be disposed of after a single use.


The endoscope 110 is an instrument that allows for the preparation and optional examination of the interior of a canal or hollow organ of a patient. In one embodiment, the endoscope 110 is designed to be a preparation-specific endoscope with a plurality of suction and aspiration lumens and associated ports configured to allow for an increased capacity and/or rate of obstruction removal from a patient. In one embodiment, the endoscope 110 includes an imaging apparatus such as an objective lens and fiber optic imaging light guide communicating with a camera at the proximal end of the scope, or an imaging camera chip at the distal tip, that produces an image that is displayed to the operator. In one embodiment, the endoscope 110 is sufficiently inexpensive to manufacture, such that it is considered a single-use and disposable item. For example, the distal shaft 112 of the endoscope 110 may be formed of a suitably lightweight, flexible material, such as a polyurethane or other suitable biocompatible plastic material. The endoscope 110 comprises an elongated shaft that contains one or more lumens located therein and wiring located therein for the purpose of performing endoscopic procedures and facilitating the insertion and extraction of fluids, gases, mechanical devices and/or medical devices into and out of the body, as described in more detail below.



FIG. 3A illustrates the main features of a distal tip 200 of the distal shaft 112 in accordance with an embodiment of the endoscope 110. The distal tip 200 includes a plurality of articulation wires 220 internally and circumferentially disposed around the distal tip 200 that are selectively tensioned and released to steer the distal tip 200. The distal tip 200 includes an image sensor apparatus 212, an illumination source, such as one or more light-emitting diodes (LEDs) 214, one or more distal aspiration/suction ports 216, and a plurality of distal fluid irrigation ports 218.


In one embodiment of the distal tip 200, a plurality of aspiration/suction ports 216, such as, for example, two, three, four or more aspiration/suction ports 216 open into one or more aspiration lumens 224 that run the length of the endoscope 110 and are connected to the vacuum line of the fluid/suction assembly 120. In the embodiment shown, the distal tip 200 of the endoscope 110 is generally cylindrical in shape, but a tapered portion 230 tapers to a flat surface 240 that is oriented perpendicular to the longitudinal axis of the endoscope 110. The aspiration/suction ports 216 are symmetrically located around and proximal to the flat surface 240. In the embodiment shown, each aspiration/suction port 216 is generally oval in shape with a length that is longer than the tapered portion 230 of the distal tip 200 such that debris can enter the aspiration/suction port 216 from a direction directly in front of the endoscope 110 as well as from the side of the distal tip 200. In the embodiment shown, the distal fluid irrigation ports 218 are also located around the flat surface 240 at positions between the aspiration/suction ports 216.


With continued reference to FIG. 3A, the image sensor apparatus 212 is mounted on the flat surface 240 at the distal tip 200 of the endoscope 110. The image sensor apparatus 212 includes electronics and an objective lens assembly that functions as the viewing port of the endoscope 110. The image sensor may be any suitable solid state imaging device, such as, for example, a complementary metal-oxide semiconductor (CMOS) chip or charge coupled device (CCD). In one embodiment of the distal tip 200, the image sensor apparatus 212 is surrounded by a plurality of LEDs 214, such as two, three, four or more LEDs. In one embodiment of the distal tip 200, an optically clear material, such as a glass or plastic nose cone, is used to encase the image sensor apparatus 212 and LEDs 214 (not shown). To prevent the distal tip 200 from becoming too hot, the LEDs may be connected to a heat sink (not shown) in thermal contact with the distal fluid ports 218 so that fluid delivered to the patient cools the LEDs. In other embodiments, separate lumens for providing a cooling liquid to the LEDs may be included in the endoscope 110. In some embodiments of the distal tip 200, additional external elements may be included, such as, for example, air ports.


In one embodiment of the distal tip 200, the plurality of irrigation fluid ports 218, such as, for example, two, three, four or more irrigation fluid ports 218 are spaced symmetrically around the distal tip 200, and may be positioned proximal to the LEDs 214. The irrigation fluid ports 218 open into one or more irrigation lumens 222 that run the length of the endoscope 110 and connect to the fluid delivery line of the fluid/suction assembly 120. The irrigation fluid ports 218 enable a large volume of irrigation fluid to be delivered to the region adjacent to the distal tip 200 of the endoscope 110. In one embodiment of the distal tip 200, at least one of the plurality of irrigation ports 218 exit the distal tip 200 in the tapered portion 230, thereby resulting in an oval-shaped orifice.



FIG. 3B illustrates another embodiment of a distal tip 250 containing at least one irrigation fluid lumen 222. The lumen 222 opens at one or more distal irrigation fluid ports 218 positioned at or near the distal-most end of the distal tip 250. The distal tip 250 further includes a plurality of lateral irrigation ports 270 spaced along the outer surface of the distal tip 250. Each lateral irrigation port 270 may include a spray nozzle (not shown) to allow irrigation fluid to be sprayed out laterally from the distal tip 250. The spray nozzle(s) may be adjustable to increase the velocity or pressure of the irrigation fluid flow and/or the direction of the fluid exiting the endoscope. The lateral irrigation ports 270 may be all open at the same time, or the ports 270 and/or nozzles may be regulated to deliver a selected irrigation pattern, such as from the distal to proximal end of the endoscope. For example, the fluid ports 270 and/or spray nozzles may further include a valve that is controllable from the operator console 130 or handheld controller 114 in order to regulate the irrigation in a selected pattern. Additionally, the ports 270, nozzles or fluid/suction assembly 120 may be regulated to deliver the irrigation fluid with a selected pulsation or frequency.


In another embodiment of the distal tip 250, a plurality of aspiration/suction ports, such as, for example, two, three, four or more aspiration/suction ports are spaced along the outer surface of the distal tip 250 (not shown). In a further embodiment of the distal tip 250, a plurality of lateral aspiration/suction ports and a plurality of lateral irrigation ports may be spaced along the outer surface of the distal tip 250 in various configurations in order to maximize the irrigation and aspiration of a body cavity of a patient.


In an alternative embodiment, the aspiration ports 216 are connected via a valve (not shown) to either the vacuum line or fluid line of the fluid/vacuum assembly 120. In such an embodiment, the aspiration ports 216 may act as either the fluid delivery mechanism or the aspiration mechanism, with the valve controlled by either an activation device on the handheld controller 114, or, alternatively, by a control signal from the operator console 130.


In operation, the aspiration ports 216, distal irrigation ports 218, and optional lateral irrigation ports 270 function together to deliver irrigation and aspiration modalities to a region of the body, such as the colon, as described in more detail below.



FIG. 4 illustrates the main features of the distal tip 300 of a patient preparative and imaging endoscope in accordance with another embodiment of the invention. Internally, the distal tip 300 includes a plurality of articulation wires (not shown) that are secured at or adjacent the distal end to steer the endoscope in a desired direction. The external features of the distal tip 300 include an image sensor apparatus 312, an illumination source, such as one or more LEDs 314, and a plurality of distal irrigation ports 316. Additionally, the distal tip 300 contains an excising device 324 disposed therein. The excising device 324 may be fixedly disposed, or removably disposed in the distal tip 300. The excising device 324 may be movable to extend beyond the distal tip 300 of the endoscope and to retract into the distal tip 300. In one embodiment, the excising device 324 is disposed within at least one aspiration/suction port. The excising device 324 may be any device capable of mechanically cutting, ablating, liquefying and/or disrupting and removing an obstruction such as fecal matter, tissue, mucus, plaque, tumors or other material that can obstruct the physician's view or interfere with the endoscopic procedure. For example, the excising device 324 may include a cutting blade, vibrational cutter, abrasive member, wire cutter, jaws, claws, pinchers, snare, etc.


In the illustrative embodiment shown in FIG. 4, the excising device 324 comprises a plurality of macerator blades 318 that are attached to a macerator shaft 326 that is electrically and mechanically connected to a macerator mechanism 322. The macerator blades 318 are preferably centered on a supporting structure 328 attached to an interior portion of the walls of a suction lumen 320. In one embodiment, the macerator blades 318 are arranged in a screw-like formation to facilitate break up and removal of obstructing material. The suction lumen 320 is connected to the vacuum line of the fluid/suction assembly 120. The macerator mechanism 322 is the actuator by which the macerator blades 318 and/or the macerator shaft 324 are driven, i.e., a miniature electric, pneumatic, hydraulic motor capable of driving the macerator shaft 324 and/or blades 318. The macerator blades 318 rotate to break up large pieces of an obstruction, such as fecal material, or other debris, and thereby liquefy the obstruction by mechanical agitation, preferably in the presence of wetting fluid that is delivered from the fluid lumen (hidden from view) connected to the fluid/suction assembly 120 via the distal fluid aspiration ports 316. Other elements, such as air ports, are not shown, but may also be included as a part of distal end 300.



FIG. 5A illustrates the main features of another embodiment of a distal tip 400 of a patient preparation and examination endoscope 110. The external features of the distal tip 400 include an image sensor 412, an illumination source, such as one or more LEDs 414, and one or more irrigation ports 418. Further included in the distal tip 400 is an entrance to a working channel lumen 422 and at least one distal aspiration port 420. The working channel lumen 422 runs the length of the endoscope 110 and is accessible through a biopsy port (not shown) in the handheld controller 114, or via the proximal shaft 116, for the purpose of passing tools such as biopsy forceps, snares, fulgration probes, and other material to the distal tip 410. In the embodiment of the distal tip 400 shown in FIG. 5A, an excising device 424 in the form of a macerator is disposed within the aspiration lumen 430. While the excising device 424 shown in FIG. 5A extends out of the distal end of the endoscope, it will be appreciated that the excising device 424 may also be configured to exit laterally through a lateral opening in the shaft, such as, for example, a lateral aspiration/suction port 270 (see FIG. 3B).


As better shown in FIG. 5B, the excising device 424 comprises a plurality of macerator blades 428 that are attached at the distal end of a macerator shaft 440 that is removably or movably disposed inside the aspiration lumen 430. The excising device 424 may be extended beyond the distal tip 410 of the endoscope 110, or may be retracted into the distal tip 410, via controls on a user input device located on the handheld controller 114 or on the operator console 130. The macerator shaft 440 may further include an energy-emitting tip 450, that is capable of emitting energy such as vibration, fluid, electromagnetic energy, or ultrasonic energy to facilitate the mechanical breakup of an obstruction.



FIG. 6A illustrates yet another embodiment of the present invention that provides a patient preparation and examination endoscope 110 with a distal tip 500 including a trapping device 520. The trapping device 520 comprises an outer flexible portion 522 adapted to gently slide along the walls of a body cavity, such as a colon, and trap liquefied material. The outer flexible portion 522 is attached to an insertion tube 524 that is capable of extending and retracting the outer flexible portion 522 into and out of the distal tip 500. The outer flexible portion 522 may be in the form of any shape suitable for trapping and/or moving liquefied material, such as, for example, a tubular shape, a half-round shape, a scoop shape, etc. The trapping device 520 acts to move, draw in, secure and optionally aspirate material such as irrigants, or liquefied material including fecal matter, tissue, mucus, plaque, tumors or other material that can obstruct the physician's view or interfere with the endoscopic procedure. In one embodiment, the outer flexible portion 522 is made of an optically clear material in order to improve visualization of the region with an imaging apparatus during deployment of the trapping device 520. The trapping device 520 may be disposed within the outer wall of the distal tip 500, or, alternatively, the trapping device 520 may be disposed within a lumen positioned within the distal tip 500, such as an aspiration lumen or working channel lumen. In one embodiment, the trapping device 520 comprises an open-ended insertion tube 524 which extends to the proximal region of the endoscope 110 and is attached to the vacuum line in the fluid/suction assembly 120 and selectively controlled by the control unit 130.



FIG. 6B illustrates an embodiment of the trapping device 520 that further comprises an expandable outer flexible portion 530 that may be expanded and retracted circumferentially about the distal region of the endoscope 110. The expandable portion 530 may be expanded and contracted with any suitable mechanism, such as, for example, an umbrella-type frame 540 as shown in FIG. 6B. The umbrella frame 540 comprises an expandable outer rim 530 which is supported by a plurality of flexible struts 542. The struts 542 are slidably engaged in the insertion tube 524. The insertion tube 524 is in turn attached to a user input device, such as the handheld controller 114 via one or more control wires (not shown). The rim 530 and struts 542 can be made of a spring-like metal material or plastic (e.g., stainless steel, Nitinol, etc.) so that the rim 530 expands radially outward upon release from the insertion tube 524. Other methods of expanding and contracting the expandable region 530 may also be utilized, such as, for example, using an inflatable member.


In another aspect, the present invention provides a method of preparing a patient for an endoscopy procedure, such as a colonoscopy. For example, the method may be used to evacuate the colon or other area of poorly prepared patients or non-prepared patients preceding or during an endoscopy procedure.


With reference to FIGS. 1-6B, an exemplary process of irrigation and aspiration for the purpose of evacuation preceding a colonoscopy procedure by using the endoscope system 100, 150 is as follows:


A user, which may be a physician, nurse, or other assistant, attaches the patient preparation and examination endoscope 110 to the operator console 130. The user verifies that all required fluid or vacuum sources, such as those provided by fluid/suction assembly 120 or the like, are available, and activates the operator console 130.


The user selects an irrigation and aspiration modality via the user interface 134; the handheld controller 114, or, alternatively, the user programs a new wash routine by recording a series of operator commands on the user interface 134. The irrigation and aspiration modality may include a selection of one or more irrigation fluids, including, for example, heated fluid, fluid containing microparticles to break up obstructing materials, fluid containing emulsifying detergents, and the like.


In one example, a jet wash is delivered for a period of time, such as, for example, three seconds via the one or more irrigation ports 218 (FIG. 3A), followed by aspiration for a period of time, such as, for example, five seconds via the one or more aspiration ports 216 (FIG. 3A). A large bolus wash is then initiated for a period of time, such as, for example, three seconds, followed by aspiration for a period of time, such as, for example, five seconds. This process may be repeated until the obstruction is removed.


More specifically, the physician introduces distal shaft 112 into the patient's colon and advances it by using, for example, rotary knobs (not shown) of the handheld controller 114 or servo motor control, until such time that the target site may be visualized upon the display unit 136. As obstructions that interfere with the colonoscopy are detected, irrigation and/or mechanical maceration is initiated upon operator command, by means of the handheld controller 114, or the user input device 134 and excising device 324, 424. As a result, the system controller 132 activates the vacuum pump 122, the fluid pump 128 and/or macerator blades 318. Consequently, irrigant is channeled to the lumen(s) of the endoscope 110 and out of, for example, the irrigation ports 218 or 316 or 418, according to the modality selected by the user via user interface 134, i.e., jet wash or a large bolus wash. After irrigation, the resulting maceration is aspirated automatically, if a pre-defined modality is being used, or by operator command by means of the user interface 134, or the handheld controller 114, if a manual procedure is being executed. The trapping device 520 (FIGS. 6A, 6B) may also be deployed to aid in the entrapment and aspiration of the obstructing material. The user interface 134 causes the vacuum pump 122 to apply suction through the distal aspiration ports 216, 320 or 420 of the endoscope 110. In accordance with one embodiment, the endoscope 110 is designed as a preparation-specific device and after the colon preparation procedure is completed, the distal shaft 112 of the endoscope 110 is withdrawn from the patient, and the endoscope 110 is disconnected from control unit 130 via, for example, a quick-release mechanism. A second imaging endoscope is then attached to the control unit 130 for the examination of the patient. In accordance with another embodiment, the endoscope 110 is designed as a preparation and examination device, and after the preparation of the patient is completed, the endoscope 110 is then used to examine the patient for the presence of polyps, lesions, and the like. If the endoscope 110 is designed as a low cost single-use device, the endoscope 110 is properly disposed of as medical waste after removal from the patient. If the endoscope 110 is designed as a reusable medical device, after removal from the patient, it is cleaned and disinfected for the next use.


A representative processing routine for performing irrigation and aspiration in accordance with this aspect of the invention is shown in FIG. 7. The irrigation and aspiration starts at 700. At 710 an obstruction is detected on the display monitor. At 720 the operator steers the distal end 200, 250, 300, 400 or 500 of the distal shaft 112 to a location proximal to the obstruction, by using live endoscopic images received from the image sensor 212, 312 or 412 via the handheld controller 114, or the user input device 134. At 730 the user selects a pre-programmed wash routine, such as, for example, a sequence comprising a bolus wash and a jet wash, followed by aspiration, via a menu displayed on the display unit 136. Alternatively, a manual mode is selected. At 740 the selected wash routine is initiated upon operator command by means of handheld controller 114 or user input device 134. The wash routine may be pre-defined, or may be manually selected by the user, based on satisfactory or unsatisfactory results. System control software activates the appropriate pumps, such as the vacuum pump 122 and the fluid pump 128, and mechanical control mechanisms and valves, by action of the system controller 132. As a result, the wash routine selected at 730 is delivered. Aspiration is commenced, following irrigation, either automatically or under operator command by means of the handheld controller 114 or user input device 134. During aspiration, the system controller 132 activates the vacuum pump 122, whereby suction is applied through at least one lumen of the endoscope 110. The evacuated material is collected within the suction canister 124 by the action of the vacuum pump 122.


At 750 an optional mechanical breakup routine may be executed, for example, by activating the excising device 324 or 424 for the required duration of time.


At 760 an optional trapping and aspirating routine may be executed, for example, by deploying the trapping device 520 to trap the obstructing material and aspirating the trapped material.


At 770 the operator determines whether the colon is sufficiently clear for examination by viewing the live endoscopic images displayed on the display unit 136. If YES, the method 700 proceeds to block 780. If NO, the method 700 returns to block 720.


At 780 the operator optionally proceeds with an endoscopic examination of the patient which may include capturing images of the colon wall, capture of tissue samples, and/or therapeutic intervention.


At 790 the distal shaft 112 of the endoscope 110 is withdrawn from the patient by the operator. At 792, if the endoscope 110 is designed for a single use, it is disposed of by means of standard medical waste disposal procedures. The method ends at 794.


While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention.

Claims
  • 1. An endoscope system for clearing an obstruction in a patient, comprising: an elongated flexible shaft with a proximal end, a distal tip terminating distally at a forward face and having a tapered portion with a narrowest point at the forward face and a widest point proximal to the narrowest point, at least one aspiration lumen, and at least one irrigation lumen;wherein the shaft includes a plurality of irrigation ports functionally connected to the at least one irrigation lumen; anda plurality of aspiration ports functionally connected to the at least one aspiration lumen, wherein the plurality of aspiration ports are positioned around the circumference of the shaft and extend into the distal tip such that the aspiration ports are at least partly open to the side of the shaft and at least partly open to the distal tip, wherein the aspiration ports each have an opening with an edge defining the entire distal circumference of the aspiration port, the edge having a first end situated proximal to the widest point of the tapered portion and a second end situated between the widest point of the tapered portion and the narrowest point of the tapered portion; andwherein the at least one irrigation lumen is adapted to be connected to a source of irrigation and the at least one aspiration lumen is adapted to be connected to a source of aspiration at the proximal end of the shaft and wherein the sources are selectively controlled by a user input device to deliver an irrigant through the at least one irrigation lumen on the endoscope and to aspirate through the at least one aspiration lumen.
  • 2. The endoscope system of claim 1, wherein at least one of the plurality of irrigation ports is located on the lateral surface of the longitudinal axis of the shaft.
  • 3. The endoscope system of claim 1, wherein at least one of the plurality of irrigation ports is located on the distal tip of the shaft.
  • 4. The endoscope system of claim 1, wherein the diameter of the at least one aspiration ports is at least twice the diameter of at least one of the irrigation ports.
  • 5. The endoscope system of claim 1, wherein at least one of the plurality of irrigation ports is oval-shaped.
  • 6. The endoscope system of claim 1, wherein at least one of the plurality of aspiration ports is oval-shaped.
  • 7. The endoscope system of claim 1, further comprising an image sensor.
  • 8. The endoscope system of claim 1, wherein the forward face is oriented perpendicular to the longitudinal axis of the endoscope.
  • 9. The endoscope system of claim 8, wherein the image sensor is disposed on the forward face.
  • 10. The endoscope system of claim 1, wherein the shaft is disposed of after a single use.
  • 11. The endoscope system of claim 1, further comprising: an excising device disposed within the aspiration lumen, wherein the excising device includes a macerator shaft and a plurality of elongated macerator blades that extend radially from the macerator shaft, the elongated macerator blades being capable of mechanically cutting and/or disrupting an obstruction in a patient into a liquefied form for aspiration through the aspiration lumen while the macerator blades are positioned entirely within the aspiration lumen.
  • 12. The endoscope system of claim 11, wherein the excising device is extendible beyond the distal tip of the shaft.
  • 13. The endoscope system of claim 11, wherein the excising device further includes an energy emitting device.
  • 14. The endoscope system of claim 11, wherein the shaft is disposed of after a single use.
  • 15. The endoscope system of claim 11, wherein only one end of each of the plurality of elongated macerator blades is attached to the macerator shaft.
  • 16. The endoscope system of claim 11, wherein a distance between a distal end of the macerator shaft and each of the plurality of elongated macerator blades is the same.
  • 17. The endoscope system of claim 1, wherein a distance between the distal end of the distal tip and each of the plurality of aspiration ports is the same.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. Provisional Application No. 60/614,929, filed Sep. 30, 2004.

US Referenced Citations (577)
Number Name Date Kind
2791218 Nimmo May 1957 A
3266059 Stelle Aug 1966 A
3470876 Barchilon Oct 1969 A
3572325 Bazell et al. Mar 1971 A
3581738 Moore Jun 1971 A
4108211 Tanaka Aug 1978 A
4286585 Ogawa Sep 1981 A
4294162 Fowler et al. Oct 1981 A
4315309 Coli Feb 1982 A
4351323 Ouchi et al. Sep 1982 A
4425113 Bilstad Jan 1984 A
4428748 Peyman et al. Jan 1984 A
4432349 Oshiro Feb 1984 A
4447227 Kotsanis May 1984 A
4471766 Terayama Sep 1984 A
4473841 Murakoshi et al. Sep 1984 A
4488039 Sato et al. Dec 1984 A
4491865 Danna et al. Jan 1985 A
4495134 Ouchi et al. Jan 1985 A
4499895 Takayama Feb 1985 A
4513235 Acklam et al. Apr 1985 A
4515444 Prescott et al. May 1985 A
4516063 Kaye et al. May 1985 A
4519391 Murakoshi May 1985 A
4559928 Takayama Dec 1985 A
4573450 Arakawa Mar 1986 A
4580210 Nordstrom Apr 1986 A
4586923 Gould et al. May 1986 A
4615330 Nagasaki et al. Oct 1986 A
4616630 Arakawa Oct 1986 A
4617915 Arakawa Oct 1986 A
4621618 Omagari et al. Nov 1986 A
4625714 Toyota Dec 1986 A
4631582 Nagasaki et al. Dec 1986 A
4633303 Nagasaki et al. Dec 1986 A
4633304 Nagasaki Dec 1986 A
4643170 Miyazaki et al. Feb 1987 A
4646723 Arakawa Mar 1987 A
4649904 Krauter et al. Mar 1987 A
4651202 Arakawa Mar 1987 A
4652093 Stephen et al. Mar 1987 A
4652916 Suzaki et al. Mar 1987 A
4654701 Yabe Mar 1987 A
RE32421 Hattori May 1987 E
4662725 Nisioka May 1987 A
4663657 Nagasaki et al. May 1987 A
4667655 Ogiu et al. May 1987 A
4674844 Nishioka et al. Jun 1987 A
4686963 Cohen et al. Aug 1987 A
4697210 Toyota et al. Sep 1987 A
4700693 Lia et al. Oct 1987 A
4714075 Krauter et al. Dec 1987 A
4716457 Matsuo Dec 1987 A
4719508 Sasaki et al. Jan 1988 A
4727417 Kanno et al. Feb 1988 A
4727418 Kato et al. Feb 1988 A
4728319 Masch Mar 1988 A
4745470 Yabe et al. May 1988 A
4745471 Takamura et al. May 1988 A
4746974 Matsuo May 1988 A
4748970 Nakajima Jun 1988 A
4755029 Okobe Jul 1988 A
4762119 Allred et al. Aug 1988 A
4765312 Sasa et al. Aug 1988 A
4766489 Kato Aug 1988 A
4787369 Allred et al. Nov 1988 A
4790294 Allred et al. Dec 1988 A
4794913 Shimonaka et al. Jan 1989 A
4796607 Allred et al. Jan 1989 A
4800869 Nakajima Jan 1989 A
4805596 Hatori Feb 1989 A
4806011 Bettinger Feb 1989 A
4819065 Eino Apr 1989 A
4819077 Kikuchi et al. Apr 1989 A
4821116 Nagasaki et al. Apr 1989 A
4824225 Nishioka Apr 1989 A
4831437 Nishioka et al. May 1989 A
4836187 Iwakoshi et al. Jun 1989 A
4842583 Majlessi Jun 1989 A
4844052 Iwakoshi et al. Jul 1989 A
4845553 Konomura et al. Jul 1989 A
4845555 Yabe et al. Jul 1989 A
4847694 Nishihara Jul 1989 A
4853772 Kikuchi Aug 1989 A
4860731 Matsuura Aug 1989 A
4867546 Nishioka et al. Sep 1989 A
4868647 Uehara et al. Sep 1989 A
4869237 Eino et al. Sep 1989 A
4873965 Danieli Oct 1989 A
4875468 Krauter et al. Oct 1989 A
4877314 Kanamori Oct 1989 A
4882623 Uchikubo Nov 1989 A
4884134 Tsuji et al. Nov 1989 A
4885634 Yabe Dec 1989 A
4890159 Ogiu Dec 1989 A
4893634 Kulik et al. Jan 1990 A
4894715 Uchikubo et al. Jan 1990 A
4895431 Tsujiuchi et al. Jan 1990 A
4899731 Takayama et al. Feb 1990 A
4899732 Cohen Feb 1990 A
4899787 Ouchi et al. Feb 1990 A
4905666 Fukuda Mar 1990 A
4918521 Yabe et al. Apr 1990 A
4919112 Siegmund Apr 1990 A
4919114 Miyazaki Apr 1990 A
4920980 Jackowski May 1990 A
4928172 Uehara et al. May 1990 A
4931867 Kikuchi Jun 1990 A
4941454 Wood et al. Jul 1990 A
4941456 Wood et al. Jul 1990 A
4951134 Nakasima et al. Aug 1990 A
4951135 Sasagawa et al. Aug 1990 A
4952040 Igarashi Aug 1990 A
4960127 Noce et al. Oct 1990 A
4961110 Nakamura Oct 1990 A
4967269 Sasagawa et al. Oct 1990 A
4971034 Doi et al. Nov 1990 A
4973311 Iwakoshi et al. Nov 1990 A
4979497 Matsuura et al. Dec 1990 A
4982725 Hibino et al. Jan 1991 A
4984878 Miyano Jan 1991 A
4986642 Yokota et al. Jan 1991 A
4987884 Nishioka et al. Jan 1991 A
4989075 Ito Jan 1991 A
4989581 Tamburrino et al. Feb 1991 A
4996974 Ciarlei Mar 1991 A
4996975 Nakamura Mar 1991 A
5001556 Nakamura et al. Mar 1991 A
5005558 Aomori Apr 1991 A
5005957 Kanamori et al. Apr 1991 A
5007408 Ieoka Apr 1991 A
5018509 Suzuki et al. May 1991 A
5022382 Ohshoki et al. Jun 1991 A
5029016 Hiyama et al. Jul 1991 A
5034888 Uehara et al. Jul 1991 A
5040069 Matsumoto et al. Aug 1991 A
RE33689 Nishioka et al. Sep 1991 E
5045935 Kikuchi Sep 1991 A
5049989 Tsuji Sep 1991 A
5050584 Matsuura Sep 1991 A
5050974 Takasugi et al. Sep 1991 A
5056503 Nagasaki Oct 1991 A
5061994 Takahashi Oct 1991 A
5068719 Tsuji Nov 1991 A
5081524 Tsuruoka et al. Jan 1992 A
5087989 Igarashi Feb 1992 A
5110645 Matsumoto et al. May 1992 A
5111281 Sekiguchi May 1992 A
5111306 Kanno et al. May 1992 A
5111804 Funakoshi May 1992 A
5113254 Kanno et al. May 1992 A
5119238 Igarashi Jun 1992 A
5131393 Ishiguro et al. Jul 1992 A
5137013 Chiba et al. Aug 1992 A
5140265 Sakiyama et al. Aug 1992 A
5159446 Hibino et al. Oct 1992 A
5170775 Tagami Dec 1992 A
5172225 Takahashi et al. Dec 1992 A
5174293 Hagiwara Dec 1992 A
5176629 Kullas et al. Jan 1993 A
5178606 Ognier et al. Jan 1993 A
5191878 Iida et al. Mar 1993 A
5198931 Igarashi Mar 1993 A
5201908 Jones Apr 1993 A
5208702 Shiraiwa May 1993 A
5209220 Hiyama et al. May 1993 A
5225958 Nakamura Jul 1993 A
5228356 Chuang Jul 1993 A
5243416 Nakazawa Sep 1993 A
5243967 Hibino Sep 1993 A
5257628 Ishiguro et al. Nov 1993 A
5271381 Ailinger et al. Dec 1993 A
RE34504 Uehara et al. Jan 1994 E
5279542 Wilk Jan 1994 A
5284486 Kotula et al. Feb 1994 A
5290279 Bonati Mar 1994 A
5291010 Tsuji Mar 1994 A
5299559 Bruce et al. Apr 1994 A
5311858 Adair May 1994 A
5325845 Adair et al. Jul 1994 A
5331551 Tsuruoka et al. Jul 1994 A
5342299 Snoke et al. Aug 1994 A
5347989 Monroe et al. Sep 1994 A
5354302 Ko Oct 1994 A
5374953 Sasaki et al. Dec 1994 A
5379757 Hiyama et al. Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5390662 Okada Feb 1995 A
5395316 Martin Mar 1995 A
5400769 Tanii et al. Mar 1995 A
5402768 Adair Apr 1995 A
5402769 Tsuji Apr 1995 A
5405319 Abell et al. Apr 1995 A
5409485 Suda Apr 1995 A
5412478 Ishihara et al. May 1995 A
5418649 Igarashi May 1995 A
5420644 Watanabe May 1995 A
5431645 Smith et al. Jul 1995 A
5434615 Matsumoto Jul 1995 A
5436640 Reeves Jul 1995 A
5436767 Suzuki et al. Jul 1995 A
5440341 Suzuki et al. Aug 1995 A
5464007 Krauter et al. Nov 1995 A
5469840 Tanii et al. Nov 1995 A
5473235 Lance et al. Dec 1995 A
5482029 Sekiguchi et al. Jan 1996 A
5484407 Osypka Jan 1996 A
5485316 Mori et al. Jan 1996 A
5496260 Krauter et al. Mar 1996 A
5515449 Tsuruoka et al. May 1996 A
5518501 Oneda et al. May 1996 A
5543831 Tsuji et al. Aug 1996 A
5569158 Suzuki et al. Oct 1996 A
5569159 Anderson et al. Oct 1996 A
5586262 Komatsu et al. Dec 1996 A
5589854 Tsai Dec 1996 A
5591202 Slater et al. Jan 1997 A
5608451 Konno et al. Mar 1997 A
5619380 Agasawa et al. Apr 1997 A
5622528 Hamano et al. Apr 1997 A
5631695 Nakamura et al. May 1997 A
5633203 Adair May 1997 A
5643203 Beiser et al. Jul 1997 A
5645075 Palmer et al. Jul 1997 A
5647840 D'Amelio et al. Jul 1997 A
5658238 Suzuki et al. Aug 1997 A
5667477 Segawa Sep 1997 A
5674182 Suzuki et al. Oct 1997 A
5674197 van Muiden et al. Oct 1997 A
5685823 Ito et al. Nov 1997 A
5685825 Takase et al. Nov 1997 A
5691853 Miyano Nov 1997 A
5695450 Yabe et al. Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5702349 Morizumi Dec 1997 A
5703724 Miyano Dec 1997 A
5704371 Shepard Jan 1998 A
5704896 Fukunishi et al. Jan 1998 A
5708482 Takahashi et al. Jan 1998 A
5721566 Rosenberg et al. Feb 1998 A
5724068 Sanchez et al. Mar 1998 A
5728045 Komi Mar 1998 A
5739811 Rosenberg et al. Apr 1998 A
5740801 Branson Apr 1998 A
5746696 Kondo May 1998 A
5764809 Nomami et al. Jun 1998 A
5767839 Rosenberg Jun 1998 A
5769816 Barbut et al. Jun 1998 A
5781172 Engel et al. Jul 1998 A
5788714 Ouchi Aug 1998 A
5789047 Sasaki et al. Aug 1998 A
5793539 Konno et al. Aug 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807240 Muller et al. Sep 1998 A
5810715 Moriyama Sep 1998 A
5812983 Kumagai Sep 1998 A
5819736 Avny et al. Oct 1998 A
5820591 Thompson et al. Oct 1998 A
5821466 Clark et al. Oct 1998 A
5821920 Rosenberg et al. Oct 1998 A
5823940 Newman Oct 1998 A
5823948 Ross, Jr. et al. Oct 1998 A
5827186 Chen et al. Oct 1998 A
5827190 Palcic et al. Oct 1998 A
5827203 Nita Oct 1998 A
5828197 Martin et al. Oct 1998 A
5828363 Yaniger et al. Oct 1998 A
5830124 Suzuki et al. Nov 1998 A
5830128 Tanaka Nov 1998 A
5836869 Kudo et al. Nov 1998 A
5837023 Koike et al. Nov 1998 A
5840014 Miyano et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5843000 Nishioka et al. Dec 1998 A
5846183 Chilcoat Dec 1998 A
5855560 Idaomi et al. Jan 1999 A
5857963 Pelchy et al. Jan 1999 A
5865724 Palmer et al. Feb 1999 A
5868664 Speier et al. Feb 1999 A
5868666 Okada et al. Feb 1999 A
5873816 Kagawa et al. Feb 1999 A
5873866 Kondo et al. Feb 1999 A
5876326 Takamura et al. Mar 1999 A
5876331 Wu et al. Mar 1999 A
5876373 Giba et al. Mar 1999 A
5876427 Chen et al. Mar 1999 A
5877819 Branson Mar 1999 A
5879284 Tsujita Mar 1999 A
5880714 Rosenberg et al. Mar 1999 A
5882293 Ouchi Mar 1999 A
5882339 Beiser et al. Mar 1999 A
5889670 Schuler et al. Mar 1999 A
5889672 Schuler et al. Mar 1999 A
5892630 Broome Apr 1999 A
5895350 Hori Apr 1999 A
5897507 Kortenbach et al. Apr 1999 A
5897525 Dey et al. Apr 1999 A
5907487 Rosenberg et al. May 1999 A
5923018 Kameda et al. Jul 1999 A
5928136 Barry Jul 1999 A
5929607 Rosenberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5929900 Yamanaka Jul 1999 A
5929901 Adair et al. Jul 1999 A
5931833 Silverstein Aug 1999 A
5933809 Hunt et al. Aug 1999 A
5935085 Welsh et al. Aug 1999 A
5936778 Miyano et al. Aug 1999 A
5941817 Crawford Aug 1999 A
5950168 Simborg et al. Sep 1999 A
5951462 Yamanaka Sep 1999 A
5956416 Tsuruoka et al. Sep 1999 A
5956689 Everhart Sep 1999 A
5956690 Haggerson et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5976070 Ono et al. Nov 1999 A
5976074 Moriyama Nov 1999 A
5980454 Broome Nov 1999 A
5980468 Zimmon Nov 1999 A
5986693 Adair et al. Nov 1999 A
5991729 Barry et al. Nov 1999 A
5991730 Lubin et al. Nov 1999 A
5999168 Rosenberg et al. Dec 1999 A
6002425 Yamanaka et al. Dec 1999 A
6007531 Snoke et al. Dec 1999 A
6014630 Jeacock et al. Jan 2000 A
6015088 Parker et al. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6020875 Moore et al. Feb 2000 A
6020876 Rosenberg et al. Feb 2000 A
6026363 Shepard Feb 2000 A
6030360 Biggs Feb 2000 A
6032120 Rock et al. Feb 2000 A
6039728 Berlien et al. Mar 2000 A
6043839 Adair et al. Mar 2000 A
6050718 Schena et al. Apr 2000 A
6057828 Rosenberg et al. May 2000 A
6059719 Yamamoto et al. May 2000 A
6061004 Rosenberg May 2000 A
6067077 Martin et al. May 2000 A
6071248 Zimmon Jun 2000 A
6075555 Street Jun 2000 A
6078308 Rosenberg et al. Jun 2000 A
6078353 Yamanaka et al. Jun 2000 A
6078876 Rosenberg et al. Jun 2000 A
6080104 Ozawa et al. Jun 2000 A
6081809 Kumagai Jun 2000 A
6083152 Strong Jul 2000 A
6083170 Ben-Haim Jul 2000 A
6095971 Takahashi Aug 2000 A
6099465 Inoue Aug 2000 A
6100874 Schena et al. Aug 2000 A
6104382 Martin et al. Aug 2000 A
6120435 Eino Sep 2000 A
6125337 Rosenberg et al. Sep 2000 A
6128006 Rosenberg et al. Oct 2000 A
6129701 Cimino Oct 2000 A
6132369 Takahashi Oct 2000 A
6134056 Nakamura Oct 2000 A
6134506 Rosenberg et al. Oct 2000 A
6135946 Konen et al. Oct 2000 A
6139508 Simpson et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6142956 Kortenbach et al. Nov 2000 A
6146355 Biggs Nov 2000 A
6149607 Simpson et al. Nov 2000 A
6152877 Masters Nov 2000 A
6154198 Rosenberg Nov 2000 A
6154248 Ozawa et al. Nov 2000 A
6155988 Peters Dec 2000 A
6181481 Yamamoto et al. Jan 2001 B1
6184922 Saito et al. Feb 2001 B1
6193714 McGaffigan et al. Feb 2001 B1
6195592 Schuler et al. Feb 2001 B1
6203493 Ben-Haim Mar 2001 B1
6206824 Ohara et al. Mar 2001 B1
6211904 Adair Apr 2001 B1
6216104 Moshfeghi et al. Apr 2001 B1
6219091 Yamanaka et al. Apr 2001 B1
6221070 Tu et al. Apr 2001 B1
6241668 Herzog Jun 2001 B1
6260994 Matsumoto et al. Jul 2001 B1
6272470 Teshima Aug 2001 B1
6275255 Adair et al. Aug 2001 B1
6283960 Ashley Sep 2001 B1
6295082 Dowdy et al. Sep 2001 B1
6299625 Bacher Oct 2001 B1
6309347 Takahashi et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6310642 Adair et al. Oct 2001 B1
6319196 Minami Nov 2001 B1
6319197 Tsuji et al. Nov 2001 B1
6334844 Akiba Jan 2002 B1
6346075 Arai et al. Feb 2002 B1
6366799 Acker et al. Apr 2002 B1
6381029 Tipirneni Apr 2002 B1
6398724 May et al. Jun 2002 B1
6413207 Minami Jul 2002 B1
6421078 Akai et al. Jul 2002 B1
6425535 Akiba Jul 2002 B1
6425858 Minami Jul 2002 B1
6436032 Eto et al. Aug 2002 B1
6441845 Matsumoto Aug 2002 B1
6447444 Avni et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6453190 Acker et al. Sep 2002 B1
6454162 Teller Sep 2002 B1
6459447 Okada et al. Oct 2002 B1
6468204 Sendai et al. Oct 2002 B2
6475141 Abe Nov 2002 B2
6478730 Bala et al. Nov 2002 B1
6489987 Higuchi et al. Dec 2002 B1
6496827 Kozam et al. Dec 2002 B2
6498948 Ozawa et al. Dec 2002 B1
6503193 Iwasaki et al. Jan 2003 B1
6520908 Ikeda et al. Feb 2003 B1
6524234 Ouchi Feb 2003 B2
6530882 Farkas et al. Mar 2003 B1
6533722 Nakashima Mar 2003 B2
6540669 Abe et al. Apr 2003 B2
6544194 Kortenbach et al. Apr 2003 B1
6545703 Takahashi et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6558317 Takahashi et al. May 2003 B2
6561971 Akiba May 2003 B1
6565507 Kamata et al. May 2003 B2
6574629 Cooke, Jr. et al. Jun 2003 B1
6589162 Nakashima et al. Jul 2003 B2
6595913 Takahashi Jul 2003 B2
6597390 Higuchi Jul 2003 B1
6599239 Hayakawa et al. Jul 2003 B2
6602186 Sugimoto et al. Aug 2003 B1
6605035 Ando et al. Aug 2003 B2
6609135 Omori et al. Aug 2003 B1
6611846 Stoodley Aug 2003 B1
6614969 Eichelberger et al. Sep 2003 B2
6616601 Hayakawa Sep 2003 B2
6623424 Hayakawa et al. Sep 2003 B2
6635034 Cosmescu Oct 2003 B1
6638214 Akiba Oct 2003 B2
6638215 Kobayashi Oct 2003 B2
6641528 Torii Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656110 Irion et al. Dec 2003 B1
6656112 Miyanaga Dec 2003 B2
6659940 Adler Dec 2003 B2
6663561 Sugimoto et al. Dec 2003 B2
6669629 Matsui Dec 2003 B2
6673012 Fujii et al. Jan 2004 B2
6677984 Kobayashi et al. Jan 2004 B2
6678397 Omori et al. Jan 2004 B1
6682479 Takahashi et al. Jan 2004 B1
6685631 Minami Feb 2004 B2
6686949 Kobayashi et al. Feb 2004 B2
6690409 Takahashi Feb 2004 B1
6690963 Ben-Haim et al. Feb 2004 B2
6692431 Kazakevich Feb 2004 B2
6697101 Takahashi et al. Feb 2004 B1
6699181 Wako Mar 2004 B2
6702737 Hino et al. Mar 2004 B2
6711426 Benaron et al. Mar 2004 B2
6715068 Abe Mar 2004 B1
6716162 Hakamata Apr 2004 B2
6719717 Johnson Apr 2004 B1
6728599 Wang et al. Apr 2004 B2
6730018 Takase May 2004 B2
6736773 Wendlandt et al. May 2004 B2
6743240 Smith et al. Jun 2004 B2
6749559 Krass et al. Jun 2004 B1
6749560 Konstorum et al. Jun 2004 B1
6749561 Kazakevich Jun 2004 B2
6753905 Okada et al. Jun 2004 B1
6758806 Kamrava et al. Jul 2004 B2
6758807 Minami Jul 2004 B2
6758842 Irion et al. Jul 2004 B2
6778208 Takeshige et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6785410 Vining et al. Aug 2004 B2
6785593 Wang et al. Aug 2004 B2
6796938 Sendai Sep 2004 B2
6796939 Hirata et al. Sep 2004 B1
6798533 Tipirneni Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6800057 Tsujita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6824539 Novak Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6829003 Takami Dec 2004 B2
6830545 Bendall Dec 2004 B2
6832990 Kortenbach et al. Dec 2004 B2
6840932 Lang et al. Jan 2005 B2
6842196 Swift et al. Jan 2005 B1
6846286 Suzuki et al. Jan 2005 B2
6847933 Hastings Jan 2005 B1
6849043 Kondo Feb 2005 B2
6850794 Shahidi Feb 2005 B2
6855109 Obata et al. Feb 2005 B2
6858004 Ozawa et al. Feb 2005 B1
6858014 Damarati Feb 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6863650 Irion Mar 2005 B1
6863661 Carrillo et al. Mar 2005 B2
6868195 Fujita Mar 2005 B2
6871086 Nevo et al. Mar 2005 B2
6873352 Mochida et al. Mar 2005 B2
6876380 Abe et al. Apr 2005 B2
6879339 Ozawa Apr 2005 B2
6881188 Furuya et al. Apr 2005 B2
6882785 Eichelberger et al. Apr 2005 B2
6887195 Pilvisto May 2005 B1
6890294 Niwa et al. May 2005 B2
6892090 Verard et al. May 2005 B2
6892112 Wang et al. May 2005 B2
6895268 Rahn et al. May 2005 B1
6898086 Takami et al. May 2005 B2
6899673 Ogura et al. May 2005 B2
6899674 Viebach et al. May 2005 B2
6899705 Niemeyer May 2005 B2
6900829 Ozawa et al. May 2005 B1
6902527 Doguchi et al. Jun 2005 B1
6902529 Onishi et al. Jun 2005 B2
6903761 Abe et al. Jun 2005 B1
6903883 Amanai Jun 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905462 Homma Jun 2005 B1
6908427 Fleener et al. Jun 2005 B2
6908429 Heimberger et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6916286 Kazakevich Jul 2005 B2
6923818 Muramatsu et al. Aug 2005 B2
6928490 Bucholz et al. Aug 2005 B1
6930706 Kobayashi et al. Aug 2005 B2
6932761 Maeda et al. Aug 2005 B2
6934093 Kislev et al. Aug 2005 B2
6934575 Ferre et al. Aug 2005 B2
6943663 Wang et al. Sep 2005 B2
6943946 Fiete Sep 2005 B2
6943959 Homma Sep 2005 B2
6943966 Konno Sep 2005 B2
6944031 Takami et al. Sep 2005 B2
6949068 Taniguchi et al. Sep 2005 B2
6950691 Uchikubo Sep 2005 B2
6955671 Uchikubo Oct 2005 B2
20010039370 Takahashi et al. Nov 2001 A1
20010049491 Shimada Dec 2001 A1
20020017515 Obata et al. Feb 2002 A1
20020028984 Hayakawa et al. Mar 2002 A1
20020055669 Konno May 2002 A1
20020058904 Boock et al. May 2002 A1
20020080248 Adair et al. Jun 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020087166 Brock et al. Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020123761 Barbut Sep 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020151906 Demarais et al. Oct 2002 A1
20020193664 Ross et al. Dec 2002 A1
20030032863 Kazakevich Feb 2003 A1
20030069897 Roy et al. Apr 2003 A1
20030130613 Harmon et al. Jul 2003 A1
20030149338 Francois et al. Aug 2003 A1
20030181905 Long Sep 2003 A1
20030199736 Christopher Oct 2003 A1
20040039348 Kim et al. Feb 2004 A1
20040049097 Miyake Mar 2004 A1
20040054258 Maeda et al. Mar 2004 A1
20040073083 Ikeda et al. Apr 2004 A1
20040073084 Meada et al. Apr 2004 A1
20040073085 Ikeda et al. Apr 2004 A1
20040147809 Kazakevich Jul 2004 A1
20040167379 Akiba Aug 2004 A1
20040249247 Iddan Dec 2004 A1
20040257608 Tipirneni Dec 2004 A1
20050197861 Omori et al. Sep 2005 A1
20050203341 Welker et al. Sep 2005 A1
20050228697 Funahashi Oct 2005 A1
20050256464 Pallas Nov 2005 A1
Foreign Referenced Citations (23)
Number Date Country
0 689 851 Jan 1996 EP
1 300 883 Apr 2003 EP
58-78635 May 1983 JP
05-31071 Feb 1993 JP
05-091972 Apr 1993 JP
06-105800 Apr 1994 JP
06-254048 Sep 1994 JP
07-8441 Jan 1995 JP
10-113330 May 1998 JP
10-286221 Oct 1998 JP
11-216113 Aug 1999 JP
3219521 Aug 2001 JP
2002-102152 Apr 2002 JP
2002-177197 Jun 2002 JP
2002-185873 Jun 2002 JP
2002-253481 Sep 2002 JP
3372273 Nov 2002 JP
2003-75113 Mar 2003 JP
3482238 Oct 2003 JP
WO 9313704 Jul 1993 WO
9505112 Feb 1995 WO
WO 2004016310 Feb 2004 WO
WO 2005023082 Mar 2005 WO
Related Publications (1)
Number Date Country
20060173244 A1 Aug 2006 US
Provisional Applications (1)
Number Date Country
60614929 Sep 2004 US