Device for ocular access

Information

  • Patent Grant
  • 12090088
  • Patent Number
    12,090,088
  • Date Filed
    Wednesday, November 10, 2021
    3 years ago
  • Date Issued
    Tuesday, September 17, 2024
    2 months ago
Abstract
The present invention provides devices to access the suprachoroidal space or sub-retinal space in an eye via a minimally invasive transconjunctival approach. The devices may also be used after a partial dissection, for example after dissection of the outer scleral layer of the eye, and using the device within the dissection to access the suprachoroidal space or the sub-retinal space.
Description
BACKGROUND OF INVENTION

The suprachoroidal space is a potential space in the eye that is located between the choroid, which is the middle layer or vascular tunic of the eye, and the sclera, the outer (white) layer of the eye. The suprachoroidal space extends from the anterior portion of the eye near the ciliary body to the posterior end of the eye adjacent to the optic nerve. Normally the suprachoroidal space is not evident due to the close apposition of the choroid to the sclera from the intraocular pressure of the eye. Since there is no substantial attachment of the choroid to the sclera, the tissues can separate to form the suprachoroidal space when fluid accumulation or other conditions occur. The suprachoroidal space provides a potential route of access from the anterior region of the eye to the posterior region for the delivery of treatments for diseases of the eye. Standard surgical access to the suprachoroidal space is achieved through incisions in the conjunctiva and the sclera, and is primarily performed in an operating room. Surgical access is useful in draining choroidal effusions or hemorrhage, and in placing microcatheters and cannulas into the suprachoroidal space for delivery of agents to the back of the eye. Treatments for diseases such as age-related macular degeneration, macular edema, diabetic retinopathy and uveitis may be treated by the appropriate active agent administered in the suprachoroidal space.


The sub-retinal space is a potential space in the eye that is located between the sensory retina and the choroid. The sub-retinal space lies under all portions of the retina, from the macular region near the posterior pole to the ora serrata, the anterior border of the retina. Normally the sub-retinal space is not evident as the retina needs to be apposed to the underlying choroid for normal health and function. In some disease states or as a result of trauma, a retinal detachment may occur, forming a fluid filled region in the sub-retinal space. Such spaces normally require treatment to reattach the retina before retinal function is irreversibly lost. However, it has been found that some treatments such as gene therapy or cell therapeutics may be applied to the sub-retinal space to provide maximum exposure to the retina. In a normally functioning retina, small injections in the sub-retinal space create a small area of retinal detachment which resolves in a short period of time, allowing direct treatment of the retina.


The sub-retinal space may be accessed ab-interno by piercing a small gauge needle through the retina. This procedure involves penetration of the intraocular space of the eye and forming a small retinotomy by the needle. A therapeutic agent injected into the sub-retinal space may flow out through the retinotomy into the vitreous cavity causing exposure of the therapeutic to the lens, ciliary body and cornea as it exits through the anterior aqueous outflow pathway.


It is desired to have a method whereby the suprachoroidal space or the sub-retinal space may be accessed in a minimally invasive method via an ab-externo transconjunctival approach. Such a method would provide a method to limit, guide or guard the penetration of a needle device into the suprachoroidal space or sub-retinal space to prevent further penetration. The present invention provides an apparatus to allow minimally invasive, transconjunctival access to the suprachoroidal space or sub-retinal space in the eye for the delivery of therapeutic or diagnostic materials.


SUMMARY OF THE INVENTION

The present invention provides a device comprising an elongated body having a distal end and proximal end, said ends in communication through an internal pathway within the body wherein:

    • the distal end is configured with a sharp edge or point to penetrate into ocular tissues of the outer shell of the eye,
    • a moveable guarding element disposed in a first configuration to shield the ocular tissues from the sharp edge or point, and adapted to apply a distally directed force to the tissues at the distal end of the device to displace tissue away from the distal end of the device upon entry into the suprachoroidal space or subretinal space in an eye with the distal end; wherein the guarding element is moveable to a second configuration to expose said sharp edge or point to said tissues for penetration into the tissues,
    • and an access port to deliver materials and substances through the pathway in the elongated body after deployment of the guarding element within the suprachoroidal space or subretinal space.


In some embodiments the guarding element is attached to a spring or compressible element that upon compression thereof provides a distally directed force on the guarding element.


In some embodiments the guarding element comprises a flowable material selected from a fluid or gas that is directed to flow out of the distal end of the device to provide a distally directed force.


In some embodiments the device further comprises a sealing element attached at the distal end of the elongated body adapted to reduce or prevent leakage of fluid or gas through a tissue tract created by the device.


In some embodiments the device accommodates a spring to apply a distal force on the sealing element to provide a sealing force of the element against the eye tissue.


In some embodiments the device comprises a reservoir at the proximal end for receiving a material to be delivered at the target space and the sealing element is in mechanical communication with an activating element for releasing the material from the reservoir.


In some embodiments the device comprises an associated sealing element adapted for retention on the surface of the eye to receive the distal end of the device to locate and stabilize the device during penetration into the eye.


The invention further provides a device for placement in the sclera of an eye, comprising a body having a proximal end adapted for location at or near the scleral surface and a distal end adapted for location within the suprachoroidal or subretinal space, where the device comprises a lumen and a mechanical stop at the proximal end for retaining the proximal end at or near the scleral surface.


Methods of using the devices of the invention to access the suprachoroidal or subretinal spaces of the eye are also provided.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-section of the eye with a detail view of the layers of the eye.



FIG. 2 is a schematic of a device according to one embodiment of the invention comprising an angled tip.



FIG. 3 is a schematic of a device according to one embodiment of the invention comprising a guard element disposed in the lumen of the main shaft.



FIG. 4 is a schematic of a device according to one embodiment of the invention comprising a tubular guard element disposed about the outside of the main shaft.



FIG. 5 is a schematic of a device according to one embodiment of the invention comprising a reservoir element.



FIG. 6 is a schematic of a device according to one embodiment of the invention comprising a sealed reservoir activated by piercing said seal.



FIG. 7 is a schematic of a device according to one embodiment of the invention comprising a spring loaded distal element on a sliding shaft with a valve mechanism.



FIG. 8 is a schematic of a device according to one embodiment of the invention comprising a sliding distal element on a sliding shaft with a valve mechanism.



FIG. 9 is a schematic of a device according to one embodiment of the invention comprising a fixed shaft and a sliding outer element connected to a valve mechanism.



FIG. 10 is a schematic of a device according to one embodiment of the invention comprising a sealing element spring loaded about a main shaft.



FIG. 11 is a schematic of a device according to one embodiment of the invention comprising a separate sealing mechanism disposed upon the surface of the tissues and an injecting element inserted therethrough.



FIG. 12 is a schematic depiction of a device performing injections into the suprachoroidal and subretinal spaces.



FIG. 13 is a schematic of a device according to one embodiment of the invention comprising an access port on a trocar.



FIG. 14 is a schematic depiction of an access port placed in suprachoroidal space with a device.



FIG. 15 is a schematic depiction of a main shaft of a device according to the invention with a beveled tip and the tissue contacting surface of the device.



FIG. 16 is a graph of the results of the test described in Example 13.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The present invention provides methods and devices to access the suprachoroidal space or sub-retinal space in an eye via a minimally invasive transconjunctival approach to eliminate the need for dissection and subsequent suture closure of the dissection. The devices may also be used after a partial dissection, for example after dissection of the outer scleral layer of the eye, whereby the device is used within the dissection to access the suprachoroidal space or the sub-retinal space. Specifically, the invention provides devices that advantageously may be used in an operating room- or treatment room based setting, to allow for the delivery of substances to the suprachoroidal space or sub-retinal space. Of particular utility is the use of the device to deliver drugs or drug containing materials which provide sustained availability of the drug to the eye. Drugs injected with the device to the suprachoroidal space are useful for treating the choroid and through the vasculature of the choroid, the inner tissues of the eye. Drugs injected with the device to the sub-retinal space are useful for treating the retinal pigment epithelia and the sensory retina. Some examples include polymer drug release materials in the form of injectable filaments or microspheres, or drugs with limited solubility that would provide slow release of drug to the eye. Limited solubility steroids such as triamcinolone acetonide or loteprednol etabonate are steroids which may be injected into the suprachoroidal in a suspension formulation.


The devices comprise an elongated body with a distal and a proximal ends, where the device is held by the operator at the proximal end. The distal end may be configured to penetrate the conjunctiva and the sclera, but not the choroid to access the suprachoroidal space. Alternatively, the distal end may be configured to penetrate the conjunctiva, sclera, and the choroid but not the retina to access the sub-retinal space. The device may contain substances to be delivered through the distal end once placed into the suprachoroidal or sub-retinal spaces. Alternatively, the proximal end may be configured to receive apparatus for the delivery of substances such as a syringe. The devices may also be adapted to place a thin-walled sleeve, as a port or introducer, into the suprachoroidal space or sub-retinal space to allow for subsequent placement and advancement of cannulae or catheters.


In certain preferred embodiments, the device is adapted to limit penetration depth and/or to safely displace the choroid or retina away from the overlying tissue, thereby allowing the distal tip to penetrate into the suprachoroidal space or sub-retinal space, but preventing the distal tip from penetrating or causing damage to the choroid or retina itself. Displacement-limiting or guarding elements may be provided through mechanical or fluidic mechanisms to provide a forward (distally) directed force to the tissues in the eye at the distal tip of the device. The guarding elements may be self-activated by the device or manually activated by the surgeon at the appropriate time. In conjunction with a fluidic mechanism acting as a guarding element, the device may incorporate a sealing element directed at the site of penetration of the eye to prevent leakage of the fluidic element that might cause undesired reduction of the degree of intended displacement of the underlying choroid or retina.


As shown in FIG. 1, the eye 1 is a globe with two main sections, the anterior segment containing the cornea 2, iris 3, ciliary body 4 and lens 5; and the posterior segment containing the choroid 6, retina 7 and vitreous 8. The outer shell of the eye is comprised of four main layers, said layers from outside to inside are: the conjunctiva, the thin, loosely adhered outer cover of the eye; the sclera 9, the white collagenous tissue making up the major structural component of the eye; the choroid 6, the vascular layer of the eye; and the retina 7, the sensory layer of the eye. The two targets being assessed by the invention are the potential space between the sclera and the choroid, the suprachoroidal space 10, and the potential space between the retina and the choroid, the sub-retinal space 11.


In one embodiment (FIG. 2), the device according to the invention comprises a main shaft 12 with a distal end and a proximal end in internal communication with each other, such as, through a lumen 15. The distal end may comprise a beveled, sharpened tip 13 configured to penetrate ocular tissues with a minimum amount of force to create a tract or passage in the sclera. Tip 13 may comprise a point, a single bevel or multiple bevel surfaces. Bevels (the angle swept by the surfaces with the pointed tip at the apex) in the range of 10°-30° are preferred. The proximal end may comprise attachment receiver 14 such as a female Luer connector to allow for attachment of a syringe or other delivery apparatus. The main shaft 12 may comprise a hollow tube with a lumen 15. The shaft may have an outer diameter in the range of 41 gauge (0.0028 inch, 0.071 mm) to 20 gauge (0.035 inch, 0.89 mm) and an inner lumen diameter in the range of 0.002 inch (0.05 mm) to 0.023 inch (0.58 mm). The tube may comprise a metal such as tungsten, Nitinol (nickel-titanium alloy) or stainless steel; or a polymer such as polyetheretherketone (PEEK), polycarbonate, nylon or other similar structural engineering polymer. In one embodiment, the shaft may incorporate an angle or bend 16 near the distal end. The angle or bend is used to direct the distal tip from an initial approach perpendicular to the surface which allows for case of entry, to a path which enters the suprachoroidal space or sub-retinal space approximately tangential to the curve of the eye. The bend angles may be in the range of 10°-60°, and preferably in the range of 20°-40°.


In another embodiment (FIG. 3), the shaft 12 may incorporate a mechanical guard to displace the choroid or retina from the sharpened distal tip. The mechanical guard may comprise an element 18 slideably disposed within the lumen 15 or an element disposed outside the diameter of the shaft 12. In the first instance, the guard 18 may comprise a blunt tip, elongated member 17, slideably disposed within the lumen 15 of the main shaft, having the guard distal tip extending beyond the distal tip of the main shaft and connected to the body of the device by a compression spring 19. The guard member 17 is spring loaded in a manner such that when the blunt device tip encounters tissues with substantial mechanical resistance, such as the sclera, the guard member is compressed backwards into the lumen, exposing the sharpened tip of the device and allowing it to penetrate tissues. During advancement within the tissues with the sharpened tip, the spring provides a forward directed force to the guard. When the distal tip encounters an open space or tissues that may be displaced such as the choroid in the case of the suprachoroidal space or the retina in the case of the sub-retinal space, the guard member 17 again extends forward due to the reduced resistance against the tip, ahead of the sharpened tip of the device and thereby displacing the tissues away from the tip of the device. The tissue displacement spring rate for the guard is in the range of about 0.3 lb./in (0.05 N/mm) to 2.8 lb./in (0.50 N/mm) and preferably in the range of 4.6 lb./in (0.8 N/mm) to 1.4 lb./in (0.25 N/mm). The guard member may have a configuration to allow the flow of fluid through the lumen of the main shaft once the guard is deployed and the underlying tissue is displaced. Alternatively, the guard may be configured as part of a removable assembly such that once the sharpened tip is in the appropriate space, the guard assembly may be removed and a delivery device, such as a syringe may be attached to the proximal end to deliver a fluid, therapeutic agent or diagnostic substance.


Referring to FIG. 4, the mechanical guard may comprise a tube 20 slideably disposed on the outside of the main shaft 12, which is also connected to the main shaft by a compressive element 21 such as a metallic or plastic spring, a polymer with elastic properties or a compressible gas reservoir. The tube is sized and configured to enter the tract or passage in the sclera with the main shaft. The device is configured such that the compressive element 21 exerts a force on the mechanical guard to provide a forward directed force at the distal end. In a similar manner to the previous embodiment described in connection with FIG. 3, when the tubular guard encounters tissue with mechanical resistance greater than the choroid or retina (e.g. sclera) the tube is displaced backwards (in the proximal direction), exposing and allowing the sharpened tip to penetrate the tissues. When the guard enters the tissues and encounters an open space or soft tissue such as the choroid or retina, it slides forward due to the reduced resistance, effectively blocking the distal tip of the device from further penetration.


In another embodiment, the guard may comprise a flowable or fluidic guard, composed of either a fluid or gas, which is delivered through the distal end of the device to provide a forward directed force and displace the choroid as the device distal tip enters the suprachoroidal space or the displacement of the retina as the distal tip enters the sub-retinal space. The guard may comprise a fluid, such as sterile water, saline, balanced salt solution, silicone oil, surgical viscoelastic, polymer solution or an ophthalmically acceptable perfluorocarbon fluid such as perfluoro-n-octane. Alternately, the guard may comprise a gas, such as air, nitrogen (N2), carbon dioxide (CO2), or gases used in ophthalmology such as sulfur hexafluoride (SF6) or octafluoropropane (C3F8). Additionally the guard may comprise the fluid or gas of a therapeutic or diagnostic formulation to be delivered. Fluid or gas volumes and pressures to sufficiently displace the tissues without overinflating the eye but allowing enough space to safely perform an injection are usefully in the range of about 10 microliters to 500 microliters volume and about 0.05 mm Hg to 52 mm Hg gauge pressures, and preferably in the range of 50 microliters to 250 microliters volume and 4 mm Hg to 30 mm Hg gauge pressure. Such a fluidic guard may be delivered through a syringe filled with the fluid or gas attached to the proximal connector.


In another embodiment (FIG. 5), the device comprises a pressurized reservoir 22 for the delivery of a precise amount of the fluidic guard. The reservoir may be configured to deliver the material at a precise pressure and flow rate to achieve displacement of the choroid or retina, while preventing over-inflation of the space. The reservoir may be adapted to be prefilled to a desired volume and pressure. This may be accomplished, for example, by incorporating entries 23 to fill the reservoir, such as injection ports, valves, heat sealable caps or similar entries to allow sterile transfer of materials to the reservoir, which may be accomplished during the manufacture of the device. The reservoir may further be adapted to allow controlled access to the main shaft lumen to allow for the injection of the contents of the reservoir to the target site. Access may be achieved by a septum 24, seal or plug at the distal end of the reservoir, configured to accommodate an activating mechanism of the device. In another embodiment, the reservoir may be configured to deliver a therapeutic or diagnostic substance with a flowable material to act as a fluidic guard.


The device may be adapted to automatically activate the delivery of the fluid or gas, or the delivery may be activated and controlled by the user. Automatic delivery may be triggered by a plate or stop, which, when the stop comes in contact with the surface of the eye, triggers the delivery of the fluid or gas. In one embodiment (FIG. 6) the stop may comprise a tubular element 25 disposed about the outside of the main shaft 12. The element 25 may be attached to the main body by means of a compressive element 21 such as a metallic or plastic spring, a polymer with elastic properties, or a compressible gas reservoir. The main shaft may comprise the activating mechanism to release reservoir material. The mechanism may comprise a sharpened tip 26 at the proximal end of the main shaft configured to pierce a septum or seal 24 on the reservoir 22.


In another embodiment (FIG. 7), the device comprises a main shaft 12 with a distal, beveled tip 13 and a trigger stop 37 disposed about the shaft. The main shaft is disposed within a proximal hub 38 containing a reservoir 22. The reservoir comprises a check valve 27 and Luer connector 28 on the proximal end to receive attachments to fill the reservoir. The distal end of the reservoir contains a polymer septum 24. The proximal end 29 of the main shaft is sealed and disposed through the septum. The proximal end of the main shaft comprises a hole 30 or valve port on the side, the port being distally displaced from the septum when the device is not activated. The reservoir is prefilled with a guard fluid or gas, or a therapeutic agent by a syringe or gas line connection. A tubular element 25 is disposed about the outside of the main shaft distal portion, the element attached to the main shaft by a compression spring 21. The spring constant is in the range of 0.29 lb./in (0.05 N/mm) to 14.3 lb./in (2.5 N/mm) and preferably in the range of 0.97 lb./in (0.17 N/mm) to 3.37 lb./in (0.59 N/mm). The device is adapted such that upon contact with the surface of the eye, the distal tubular element 25 translates rearward (in the proximal direction) compressing the spring element against the trigger stop 37 until the force reaches a predetermined value set by the spring rate and the coefficient of friction of the septum against the main shaft. Upon reaching the appointed force value, continued advancing pressure on the device hub translates the main shaft rearwards, displacing the port 30 proximally to the reservoir side of the septum 31, releasing the contents of the reservoir to exit the distal tip. The trigger stop may also be configured to limit the rearward travel of the main shaft beyond the point where the reservoir contents are released. The force value combination of spring rates and septum friction coefficients may be selected to trigger at a specific penetration depth either when entering the suprachoroidal space or the subretinal space. The depth of penetration is in the range of about 0.02 inches (0.5 mm) to 0.157 inches (4 mm).


In another embodiment (FIG. 8), the device comprises a main shaft 12 with a distal, beveled tip 13 and a tubular trigger stop 39 disposed about the shaft. The trigger stop has an inner diameter larger than the outer diameter of the main shaft and is attached to the main shaft at the proximal end such that the gap between the trigger stop and the main shaft faces toward the distal end. The main shaft is disposed within a proximal hub 38 containing a reservoir 22. The reservoir comprises a check valve 27 and Luer connector 28 on the proximal end to receive attachments to fill the reservoir. The distal end of the reservoir contains a polymer septum 24. The proximal end 29 of the main shaft is sealed and disposed through the septum. The proximal end of the main shaft comprises a hole 30 or valve port on the side, the port being distally displaced from the septum when the device is not activated. The reservoir is prefilled with a guard fluid or gas, or a therapeutic agent by a syringe or gas line connection. A tubular element 25 is disposed about the outside of the main shaft distal portion, the element 25 comprising a thicker walled distal portion 56 and a thin walled proximal portion 40. The thin walled portion is sized to slide between the tubular trigger stop and the main shaft. The device is adapted such that upon contact with the surface of the eye, the distal tubular element 25 translates rearward until the proximal end of the thick walled portion comes in contact with the trigger stop 39. Continued advancing pressure on the device hub translates the main shaft rearwards, displacing the port 30 proximally to the reservoir side of the septum 31, releasing the contents of the reservoir to the lumen of the main shaft. The trigger stop may be configured to limit rearward travel. The lengths of the device components and the gap between the distal tubular element 25 and the trigger stop 39 are adapted to provide a specific depth of penetration of the main shaft distal beveled tip 13.


The depth of penetration to enter the suprachoroidal or subretinal space is in the range of about 0.02 inches (0.5 mm) to 0.157 inches (4 mm).


In another embodiment (FIG. 9), the device according to the invention comprises a tubular distal shaft 41 with a distal beveled tip 13 and tubular proximal shaft 42. The shafts 41, 42 are slideably disposed with each other and one shaft may be sized so as to slide inside or outside the other shaft. Proximal shaft 42 incorporates a sealed proximal end 29 and a hole or port 30 on the side. An elastomer seal 43 is disposed about the outside of the distal shaft 41 and proximal shaft 42, across the junction between the two and provides a seal to prevent fluid or gas escape while allowing linear motion between the shafts. The distal shaft is fixed in place to a proximal hub 38, by way of a cross-bar 44. An outer housing 45 is slideably disposed about the distal shaft and is attached to the proximal shaft. The outer housing comprises a slot or cut-out 46 to accommodate the cross-bar 44, allowing the outer housing and proximal shaft to slide independently of the fixed distal shaft 41. The proximal hub comprises a reservoir 22 with a polymer septum 24, a check valve 27 to allow pressurization of the reservoir and Luer connector 28 at the proximal end to receive attachments to fill the reservoir. The sealed proximal end 29 of the proximal shaft is disposed through the septum, such that during filling of the reservoir, the port 30 is distally displaced from the septum 24 thereby sealing the reservoir. The reservoir is prefilled with a guard fluid or gas, or a therapeutic substance by a syringe or gas line connection. The device is adapted such that upon contact with a tissue surface of the distal tip of the outer housing, the outer housing 45 and the proximal shaft 42 are translated rearward (in the proximal direction) displacing the port 30 proximally to the reservoir side of the septum 24, releasing the contents into the main shaft lumen.


In another embodiment (FIG. 10), in conjunction with a fluidic guard, the device may also comprise a sealing element directed at the site of conjunctiva and sclera penetration. The seal is designed to prevent leakage of the fluid or gas through the tissue tract created by the device which would reduce the amount of fluid or gas directed at the underlying choroid or retina to displace the underlying tissue to prevent penetration by the pointed or beveled tip of the main shaft. The seal may be incorporated on the device, for example as an outer tubular sleeve 47 slideably disposed over the main shaft 12 which incorporates a beveled tip 13. The tubular sleeve incorporates an internal seal 48 to seal the sleeve against the main shaft to prevent fluid or gas reflux between the sleeve and shaft. The proximal end of the main shaft is disposed in a hub 38 comprising a Luer connector 28 for attachment of a fluid or gas delivery mechanism such as a syringe. The distal end of the sleeve acts to seal against the conjunctiva at the surface of the eye or the scleral surface after minor dissection. The tubular sleeve is preferred to have a diameter at the tissue surface to provide sufficient area surrounding the site of tissue penetration to provide an effective seal against the pressure of the fluidic guard. The outer diameter of the tubular sleeve may range from 0.04 inch (1.0 mm) to 0.12 inch (3.0 mm) to provide adequate sealing area on the surface of the eye without unduly obscuring the visualization of the site. The tubular sleeve may be aided by a spring mechanism 21 to provide a sealing force against the eye surface as the inner main shaft penetrates the outer tissues of the eye. The spring constant is the range of 0.29 lb./in (0.05 N/mm) to 14.3 lb./in (2.5 N/mm) and preferably in the range of 0.97 lb./in (0.17 N/mm) to 2.0 lb./in (0.35 N/mm). The spring mechanism may be a mechanical spring or alternatively a gas reservoir or elastomeric component to provide spring-like function. The distal end of the tubular sleeve 47 may incorporate rubber, elastomeric or deformable materials 49 to conform to the tissue surface and aid the sealing effect and reduce the required sealing area.


Alternatively, (FIG. 11) the sealing element may be a separate component 50 that is placed on the eye and the device used to penetrate the seal and underlying conjunctiva and sclera. The separate component may be a soft polymer, rubber or elastomer of a thickness to provide the appropriate main shaft length through the conjunctiva and sclera to reach the target suprachoroidal or sub-retinal space. The separate component may have a target region 51 of decreased thickness sized to fit the outer dimensions of the device when the device is placed on the component to aid location and stabilization of the device when placing the device on the eye, penetrating the seal, and penetrating the overlying conjunctiva and sclera. The separate component may also be of the appropriate thickness to trigger release of the guard fluid or gas once the distal lumen of the main shaft has entered the seal. Mechanical features of the separate component such as a flange, sleeve or rod extending toward the device as it is placed may trigger release of the guard fluid or gas. The device may incorporate a stop 52, sized to fit within the target region 51 of the sealing element which controls the depth of entry of the distal tip of the device.


The device may also comprise indicators to show when the guard has been deployed to protect the underlying choroid and retina, and that a pathway to the suprachoroidal space or sub-retinal space has been established. An indicator may comprise a depth indicator of the mechanical guard or a volume or flow indicator of the reservoir. An indicator may also be coupled to a sensor to initiate a visual or audible signal to the user to limit penetration with the device and indicate that the eye is ready for injection of materials to the suprachoroidal or sub-retinal space.


Referring to FIG. 12 the materials for injection into the suprachoroidal space 32 or sub-retinal space 33 may comprise an implant, a drug solution, drug suspension, or drug containing material such as a gel or solid implant, gene therapy agents, stem cells or cell therapy agents. In addition, the device may comprise apparatus to extend a flexible tubular element within the suprachoroidal space or sub-retinal space after deployment of the guard, toward the posterior end of the eye to extend the distal lumen and administer materials to a location closer to the posterior region of the eye. The flexible tubular element is preferred to have a rounded atraumatic distal end to minimize trauma to the choroid or retina.


In another embodiment (FIG. 13), the device may comprise a distal end and a proximal end in communication with each other as previously described in conjunction with an outer sleeve that is implanted into the sclera. The body of the device may be in the form of a solid member or hollow tubular member 34 with a sharp tip 35. The device may incorporate a mechanical or fluidic guard as previously described to displace the choroid for access to the suprachoroidal space or to displace the retina for access to the subretinal space. The device further comprises a thin walled sleeve 36 slideably disposed about the outer diameter of the body of the device. The sleeve is advanced into the tissues as the device is placed. The sleeve 36 remains behind when the device is removed from the eye. As shown in FIG. 14, sleeve 36 functions as an access port or introducer, in communication from the outside of the eye to the suprachoroidal space 32 or sub-retinal space, for the introduction of other devices such as needles, cannulae or catheters into the space during surgery. The sleeve is typically sized at about 0.0045 inch (0.11 mm) to 0.0355 inch (0.90 mm) outer diameter with a wall thickness in the range of about 0.0005 inch (0.12 mm) to 0.002 inch (0.5 mm) and a length in the range of about 0.60 inch (1.5 mm) to 0.195 inch (5 mm). The sleeve may also have an enlarged diameter or flange at the proximal end to secure the proximal end at the surface of the eye. The sleeve may comprise metals such as nitinol, stainless steel, tungsten or polymers such as polyimide, nylon, polyamide, PEEK, or polycarbonate.


The device may further comprise a feature to limit the depth of penetration of the distal tip. This feature may comprise a mechanical stop or flange disposed about the outer diameter of the device body which limits travel by the stop encountering the surface of the eye. The stop may be in the form of a flat surface which may be disposed perpendicularly to the body of the device or may be disposed at an angle to the body such that the angle approximates the angle of the surface of the globe in relation to the angle of entry by the device itself. The stop configurations may be incorporated into the mechanism used to guard the device, such as the outer tubular member previously described. The stop may be adjustable to allow the user to tailor the use of the device to different tissue thicknesses, for example in different regions of the eye.


In many embodiments, as shown in the top view, FIG. 15, the main shaft 12 with a pointed or beveled distal end 13 will have the appropriate exposed length to access the target site. In the case of access to suprachoroidal space, the length is preferred to be sufficient to expose at least the most distal portion of the lumen to the suprachoroidal space when the device is placed through the conjunctiva and sclera to allow the guard to enter the space and displace the underlying choroid. From anatomic considerations based upon minimum combined tissue thickness of the conjunctiva and sclera of 0.015 inch (0.38 mm), this length to the distal end of the lumen is at minimum 0.025 inch (0.65 mm). In the case of access to the sub-retinal space, the main shaft length is preferred to have a length to expose the most distal portion of the lumen to the sub-retinal space when the device is placed through the conjunctiva, sclera and choroid. From anatomic considerations based upon the average combined tissue thickness of conjunctiva, sclera and choroid of 0.023 inch (0.58 mm), this length to the distal end of the lumen is at minimum 0.023 inch (0.58 mm). To minimize damage to the underlying tissue distal to the desired target space, the main shaft length is preferred to be no more than the thickness of the proximal tissue overlying the target space plus the amount of tissue displacement of the underlying tissue due to the guarding element. For access to the suprachoroidal space, this maximum length is approximately 0.108 inch (2.75 mm). For access to the sub-retinal space, this maximum length is approximately 0.118 inch (3.00 mm). When the device is used in conjunction with a sealing element, the preferred lengths are the effective lengths of the main shaft with respect to the distal edge 53 of the lumen and distal, beveled tip 54 to the distal, tissue contacting surface of the seal 55. In addition to the anatomical dimensions, the preferred functional lengths of the main shaft should also account for the mechanical characteristics of the tissues to be penetrated to account for tissue deformation during use of the device.


The following Examples are provided for the purpose of illustrating particular devices and methods according to the invention. These Examples are not intended to limit the scope of the invention in any manner.


EXAMPLES
Example 1

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device was comprised of a needle as the main shaft and a spring loaded guard element. The needle element was comprised of a 27 gauge (0.4 mm)×0.5 inch (12.7 mm) short bevel hypodermic needle (Monoject, Covidien Inc) as the main shaft. The needle tip bevel angle was 18°, and the proximal end was a standard Luer lock connector. The spring loaded guard element was comprised of a stainless steel wire 0.007 inch (0.18 mm) diameter sized to fit slideably within the lumen of the needle element main shaft and of a length so that the distal tip of the wire extended beyond the distal needle tip by 0.004 inch (0.1 mm). The tip of the wire was rounded so as not to have any sharp edges. The wire was welded into a larger stainless steel tube, sized to slideably fit inside a compression spring. A spring perch was welded to the distal end of said tube. A spring with an inner diameter of 0.049 inch (1.25 mm) and a spring rate of 0.7 lb./in (0.12 N/mm) was placed over said tube. A second outer tube, sized to fit slideably about the spring tube and with an outer diameter larger than the spring outer diameter was placed about the spring tube, to act as a proximal stop for the spring. The wire was inserted into the lumen of the needle element. A Touhy-Borst Luer connector was attached to the needle Luer connector, and then tightened about the outer tube to hold it in place. This spring assembly allowed the wire to move rearward inside the needle.


A human cadaver eye was used for the experiment. The guard wire tip was placed against the tissue surface and the device advanced slowly into the tissues. The guard tip was seen to retract against the spring pressure, allowing the needle tip to enter the tissues. When the needle had been inserted approximately 0.6 inch (1.5 mm) the advancement was stopped. Using a high resolution optical coherence tomography (OCT) imaging system, the device placement was imaged. The needle tip could be clearly seen in the suprachoroidal space with the guard tip extending beyond the needle tip and displacing the choroid


Example 2

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device was comprised of a stainless steel tubular main shaft, 0.79 inches (20 mm) long and 0.016 inches (0.4 mm) outer diameter and 0.008 inches (0.2 mm) inner diameter with a sharp 12° beveled tip. The main shaft was bonded proximally into a plastic female Luer connector. A mechanical guard element comprised of a distal thin walled polyimide tube with an inner diameter 0.0165 inches (0.42 mm) and outer diameter of 0.0175 inches (0.45 mm) was bonded to a proximal stop 0.04 inches (1.0 mm) in diameter. The distal end of the polyimide tubing was beveled to allow for entry into the tissues. The guard member was loaded onto the main shaft with a stainless steel spring of 0.017 inches (0.43 mm) inner diameter with the spring wire diameter of 0.005 inches (0.13 mm) between the guard and the plastic hub, disposed about the main shaft. The device was tested using a human cadaver eye. The tip of the device was inserted into the sclera and advanced forward. The mechanical guard was pushed rearward, allowing the sharp main shaft tip to enter the scleral tissues. With continued advancement, the guard element was also advanced into the sclera. When the distal tip of the main shaft entered the suprachoroidal space, the spring force advanced the guard element ahead of the main shaft tip, displacing the choroid. Optical Coherence Tomography (OCT) imaging confirmed the guard element tip location within the suprachoroidal space.


Example 3

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device was comprised of a metal main shaft 0.79 inches (20 mm) long and 0.016 inches (0.41 mm) outer diameter and 0.008 inches (0.2 mm) inner diameter with a sharp beveled tip. The main shaft was sealed at the proximal end and a side hole was made approximately 0.197 inches (5 mm) from the end. The device distal tip was angled to 30° and 0.059 inches (1.5 mm) length. The device featured a spring retractable metal sleeve disposed about the main shaft distal tip and that acted as a mechanism to trigger the infusion of gas into the suprachoroidal space when it retracted. The spring proximal end was attached to a metal sleeve that added structural support of the main shaft and Luer attachment. A Luer connector with a polymer septum was secured to the proximal end of the main shaft such that the main shaft penetrated the septum with the side hole distal to the septum. A check valve assembly was attached to the Luer connector to serve as a gas filled reservoir providing a means of infusing gas into suprachoroidal space to displace the choroid. The device was tested using a human cadaver eye. The device angled tip was inserted into the sclera near the pars plana and advanced until the angled tip was positioned in the suprachoroidal space. Upon contact with the scleral surface, the distal metal sleeve was pushed rearward until the spring force overcame the frictional force of the main shaft in the septum, which drove the proximal end of the main shaft through the septum positioning the side hole above the septum. Gas within the chamber was released through the main shaft, out the tip, and into the suprachoroidal space. Optical Coherence Tomography (OCT) imaging confirmed the tip location within the suprachoroidal space and release of the fluidic air guard, displacing the choroid to prevent contact of the choroid with the tip.


Example 4

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device main shaft was comprised of a 0.016 inches (0.41 mm) outer diameter and 0.008 inches (0.2 mm) inner diameter and 0.984 inches (25 mm) long injection needle with sharp bevel straight tip and proximal Luer connector. Additional design features included a metal proximal and distal outer housing assembly, 0.028 inch (0.7 mm) diameter by 0.472 inches (12 mm) long segments connected by a 0.197 inches (5 mm) long coil spring. The distal outer housing segment provided a spring retractable protective sleeve and insertion depth stop at the main shaft distal tip. The proximal outer housing segment was attached to the main shaft for improved device rigidity. The proximal main shaft open end was inserted into a polymer septum of a pressurized fluid filled reservoir. The device was tested using a human cadaver eye. Upon inserting the device distal tip through the sclera and into the suprachoroidal space, the proximal main shaft moved backward axially, pierced through the septum and into the fluid reservoir. The reservoir content was then released into the open end of the proximal main shaft and discharged out the distal tip and into the suprachoroidal space. The resulting choroid displacement to prevent contact of the distal tip with the choroid was monitored and confirmed in real time with ultrasound imaging.


Example 5

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device was comprised of a metal main shaft 0.79 inches (20 mm) long and 0.016 inches (0.41 mm) outer diameter and 0.008 inches (0.2 mm) inner diameter with a sharp beveled tip. The main shaft was sealed at the proximal end and a side hole was made approximately 0.197 inches (5 mm) from the end. A Luer connector with a polymer septum was secured to the proximal end of the main shaft such that the main shaft penetrated through, with the side hole distal to the septum. A check valve assembly was attached to the Luer connector providing for a Tillable gas reservoir of approximately 100 microliters volume. A metal sleeve with an inner diameter of 0.020 inches (0.51 mm) and an outer diameter of 0.028 inch (0.71 mm) was disposed about the main shaft and attached to it near the proximal end. The sleeve acted as a mechanism to trigger the release of the gas filled reservoir into the suprachoroidal space when forced rearward, translating the side port to the reservoir side of the septum. An access port element 0.0065 inch (0.17 mm) inner diameter and 0.0005 inch (0.012 mm) wall thickness comprised of polyimide was disposed about the outside of the main shaft and inserted under the metal sleeve. The device was tested using a human cadaver eye. The device tip was inserted into the sclera near the pars plana and advanced until the tip entered the suprachoroidal space and the sleeve triggered the release of the reservoir, injecting gas to displace the choroid. The port element was then advanced forward into the suprachoroidal space. Optical Coherence Tomography (OCT) imaging confirmed the distal end of the port location within the suprachoroidal space and a fluid injection was made through the port, while confirming inflation of the suprachoroidal space on imaging.


Example 6

Devices fabricated according to Example 5 were tested to determine the delivered pressure of a gaseous fluidic guard based upon the amount of gas charged into the reservoir and to determine the amount of choroidal displacement achieved due to the gas charge in the reservoir. A diaphragm pressure transducer (PX26-100GV, Omega Engineering) was modified to place a Luer injection port into the transducer port, minimizing the dead volume of the transducer. The transducer was connected to a digital readout (DP-41S, Omega Engineering) and then calibrated to read out in mm Hg. The main shaft needle tip of a device under test was inserted into the injection port of the pressure transducer. The check valve was removed and the Luer connector advanced to open the internal valve mechanism and equalize the system pressure. The Luer connector was then pulled back, closing the internal valve and the check valve was re-installed. A 1 cc syringe was filled with a volume of air, attached to the check valve Luer connector of the device and then expelled to charge the reservoir. The device was advanced to open the internal valve and the gauge pressure of the delivered gas was read from the digital readout. Syringe volumes of 0.1 cc to 0.7 cc were tested. However the actual fill volume of the reservoir was less than the syringe volume. Due to the fixed volume of the reservoir and the limited ability of a manual syringe to compress the gas, a small amount of gas refluxed into the syringe as evidenced by the rebound of the syringe plunger after full depression of the plunger.


Additional devices were tested in-vitro using both human and porcine cadaver eyes, and in-vitro using a live porcine animal model. A 1 cc syringe was used to load the device reservoirs with 0.2, 0.4 or 0.6 cc of air. The devices were advanced into the eyes, activating the internal valve and releasing the reservoir contents, and the resultant choroidal displacement was measured using high frequency ultrasound imaging. The table below shows the experimental results.













TABLE 1







Average
Average
Average




Choroid
Choroid
Choroid



Average
Displacement
Displacement
Displacement


Syringe
Gauge
(mm) -
(mm) -
(mm) -


Charge
Pressure
Human
Porcine
Live


Volume
(mm Hg)
Cadaver
Cadaver
Porcine


(cc)
Delivered
Eyes
Eyes
Eyes



















0.1
4.7





0.2
8.3
0.63
0.75
0.34


0.3
11.6





0.4
14.8
1.01
0.86
0.61


0.5
18.1





0.6
21.3
1.10
1.00
0.76


0.7
24.4












Example 7

A device fabricated according to Example 5 was tested for its ability to deliver a therapeutic agent to the suprachoroidal space. Porcine cadaver eyes were used in the experiment. The device reservoir was charged with 0.5 cc of air as the fluidic guard material. A syringe containing 0.25 cc of triamcinolone acetonide (TA), a corticosteroid particulate suspension (Kenalog 40, Bristol Meyers Squib), was attached to the proximal Luer connector of the device. The device was placed against the sclera of the cadaver eye and advanced until the distal tip entered the suprachoroidal space and discharged the reservoir gas, displacing the choroid away from the tip. After entering the space, the syringe plunger was depressed, injecting the TA suspension. High frequency ultrasound imaging confirmed that the suprachoroidal space had been opened and that TA particles were visible in the space. A perfusion system was set-up consisting of a reservoir of phosphate buffered saline (PBS) on a variable height platform. Tubing was attached to a port at the bottom edge of the reservoir, leading to a shut-off valve and a small tube with a Luer connector at the end. A 30 gauge (0.3 mm) hypodermic needle was attached to the reservoir Luer connector. The reservoir was elevated to provide 0.29 PSI (15 mm Hg) pressure. The 30 gauge needle was inserted through the cornea and into the anterior chamber to provide perfusion to the cadaver eye. The eye was allowed to perfuse for 6 hours at constant pressure. After the perfusion, the sclera of the eye over the injection site was dissected and removed. Examination under a light microscope showed the depot location of the TA particles on the choroid surface around the injection site. Also noted was a stream of particles extending approximately 0.55 inches (14 mm) posterior from the injection site, indicating a flow directed movement of the injectate towards the posterior pole of the eye.


Example 8

In another test, a device fabricated according to Example 5 was tested in the manner of Example 5, however the device reservoir was charged with the suspension steroid instead of air. A syringe with additional injectate was attached to the device. The device was advanced into the tissues and the reservoir fluid contents were discharged when the suprachoroidal space was reached, displacing the choroid and allowing for injection of the remaining fluid in the syringe into the suprachoroidal space. The injection location and tissue displacement was confirmed by ultrasound imaging.


Example 9

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The shafts and housings of the device were fabricated from 304 stainless steel hypodermic tubing. The device was comprised of a distal shaft of 0.016 inches (0.4 mm) outer diameter and 0.008 inches (0.2 mm) inner diameter by 0.75 inches (19 mm) long. The distal shaft had a standard hypodermic beveled tip with a main bevel angle of 12°. A shaft extension of 0.017 inches (0.43 mm) inner diameter and 0.025 inches (0.64 mm) outer diameter and 0.24 inches (6 mm) long was welded to the back of the distal shaft. A proximal shaft, the same diameter as the distal shaft and 0.42 inches (10.8 mm) long was cut and one end was welded shut. A side hole was ground through the wall 0.005 inches (0.13 mm) from the welded end. The distal end of the proximal shaft was slid inside the shaft extension on the distal shaft. A piece of 50 durometer silicone tubing 0.015 inches (0.38 mm) inner diameter by 0.027 inches (0.69 mm) by 0.2 inches (5 mm) long was placed over the junction between the proximal and distal shafts to seal the gap. An outer housing of 0.033 inches (0.84 mm) inner diameter by 0.046 inches (1.17 mm) outer diameter by 0.71 inches (18 mm) long was cut. Starting at 0.16 inches (4 mm) from the distal end of the outer housing and extending 0.5 inches (13 mm) long, one half of the outer housing was ground off leaving a half circle of tubing. An extension tube of 0.02 inches (0.51 mm) inner diameter by 0.032 inches (0.81 mm) outer diameter by 0.55 inches (14 mm) long was welded into the distal end of the outer housing, so as to act as the tissue contact portion of the moving assembly. The distal/proximal shaft assembly was placed inside the outer housing and a cross beam was welded to the distal shaft. The cross beam was adhesively bonded to a polycarbonate Luer connector. Inside the proximal end of the Luer connector, a solid disk of 50 durometer silicone rubber was inserted as a septum, with the tip of the proximal shaft just penetrating the septum so that the side hole was below the septum. A Luer check valve was attached to the Luer connector creating a sealed reservoir that could be filled from the Luer connector on the check valve.


The device was tested using a human cadaver eye. The reservoir was filled with air from a syringe. The device was placed against the tissue surface and advanced. As the outer housing assembly translated rearward, the side hole in the proximal shaft was translated to the reservoir side of the septum. The gas was released to displace the choroid and an injection of a suspension steroid (Kenalog 40, Bristol Meyers Squib) was made into the suprachoroidal space. The injection location was confirmed with ultrasound imaging.


Example 10

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device was comprised of a commercial 27 ga (0.4 mm) by 0.5 inch (12.7 mm) short bevel hypodermic needle (Monoject 27 g×½ needle, Covidien Inc.) with a bevel main angle of 18° as the main shaft. A sliding seal assembly was fabricated as follows. Two pieces of polycarbonate tubing of 0.018 inches (0.46 mm) inner diameter by 0.060 inches (1.52 mm) outer diameter were cut, a long piece at 0.37 inches (9.4 mm) and a short piece at 0.08 inches (2.0 mm) long. The proximal end of the longer piece was counter-bored at 0.028 inches (0.71 mm) diameter by 0.05 inches (1.3 mm) deep. A piece of 50 durometer silicone tubing 0.015 inches (0.38 mm) inner diameter by 0.027 inches (0.69 mm) outer diameter by 0.04 inches (1.0 mm) long was cut and inserted into the counter-bore in the long tube as an inner seal. The short piece of polycarbonate tubing was then adhesively bonded to the long tube over the counter-bore to cap the inner seal in place. A piece of 50 durometer silicone tubing of 0.025 inches (0.64 mm) inner diameter by 0.047 inches (1.2 mm) outer diameter was placed over the distal end of the polycarbonate assembly to form an outer seal. The silicone tubing was placed such that the distal edge extended beyond the end of the polycarbonate tubing to serve as a seal against the tissue surface. A spring with a spring constant of 0.97 lb./in (0.17 N/mm) was placed over the hypodermic needle and the sealing assembly was slid over the needle.


The device was tested using human cadaver eyes. 1 cc syringe was filled with 0.1 cc of a suspension steroid (Kenalog 40, Bristol Meyers Squib) and the syringe attached to the device. The tip of the device was placed in contact with the tissues and light pressure was placed on the syringe plunger, effectively pressurizing the fluid pathway. The device was advanced into the tissues, keeping the sealing assembly in contact with the surface and maintaining pressure on the syringe plunger. When the needle tip advanced through the sclera a sufficient distance, the fluid was able to be injected, displacing the choroid and injecting the fluid into the suprachoroidal space. The injection location was confirmed with ultrasound imaging.


Example 11

A device according to one embodiment of the invention was fabricated and tested for its ability to successfully penetrate the sclera and displace the choroid for access to the suprachoroidal space. The device was comprised of an elastomeric tissue surface seal and a needle assembly as the main shaft with an integral depth stop. Two different models of the tissue surface seal were fabricated. The surface seal was comprised of 50 A durometer silicone rubber. Disc shaped base elements, 0.06 inch (1.6 mm) in thickness were fabricated, either 0.17 inch (4.4 mm) or 0.26 inch (6.6 mm) in diameter. Annular shaped seal elements of the same thickness were fabricated with an outer diameter of 0.17 inch (4.4 mm) and an inner diameter of 0.06 inch (1.52 mm). An annular element was adhesively bonded centrally to a base element, using room-temperature vulcanization (RTV) silicone adhesive. A main shaft needle assembly was fabricated comprising a 27 ga (0.4 mm)×0.5 inch (12.7 mm) short bevel hypodermic needle (Monoject, Covidien Inc.). A short length of polycarbonate tubing 0.018 inches (0.46 mm) inner diameter by 0.06 inches (1.52 mm) outer diameter was placed over the needle shaft as a depth stop. The tubing was cut to a length so that the exposed needle length was 0.13 inch (3.35 mm). In combination with the thickness of the tissue seal base, this length would provide for a needle length extending beyond the base element, to enter the tissues, of 0.07 inch (1.75 mm). The outer diameter of depth stop was sized to fit snugly and seal within the inner diameter of the annular seal element.


A human cadaver eye was prepared. The tissue surface at the pars plana was carefully dried and a tissue seal assembly was placed in contact with the surface and pressed down to effect a seal. A 1 cc syringe was filled with 0.1 cc of triamcinolone acetonide steroid suspension (Kenalog 40, Bristol Meyers Squib) and attached to the needle assembly. The needle tip was inserted into the center of the base element and advanced so that the depth stop entered the inner diameter of the annular element, scaling the fluid pathway. The needle advance was continued along with light pressure on the syringe plunger. When the depth stop reached the based element, and with the needle inserted to full depth, the injection was made. Ultrasound imaging confirmed the injectate in the suprachoroidal space. Both tissue seal devices, having different base element diameters, were successful.


Example 12

An experiment was performed to determine the range of lengths of the main shaft which would allow for injection into the suprachoroidal space in an eye. An adjustable stop was fabricated, sized to go over a 27 gauge (0.4 mm) hypodermic needle used as the main shaft. The distal end of the stop was 1.5 mm (0.06 inch) in diameter and the stop could be fixed in place so as to be able to have a set amount of needle tip extending beyond it. Two different needle bevels were tested. A standard hypodermic needle, with a nominal main bevel angle of 12 degrees (Precision Glide—27 ga×½ inch, Becton-Dickenson) and a short bevel needle, with a nominal main bevel angle of 18 degrees (Monoject 250-27 ga×½ inch, Covidien) were used in the tests.


Human cadaver eyes were procured and ultrasound imaging was used to determine the average tissue thickness. The average surface tissue (scleral) thickness was 0.028 inch (0.70 mm) and the average full tissue thickness (sclera and choroid) was 0.045 inch (0.1.15 mm). Triamcinolone acetonide (Kenelog-40, Bristol Meyers Squib), a suspension steroid, was used as the injectate as the injected particles are clearly visible using ultrasound imaging. A 1 cc syringe was filled with 0.1 cc of triamcinolone for each test and attached to the test needle.


For each test, the adjustable stop was set to a preset needle length, as measured with a digital caliper. The needle tip was inserted into the tissue at the pars plana and with the adjustable stop fully pressed against the tissue surface and an injection of the triamcinolone was attempted. The injection was then evaluated using the ultrasound system to determine whether the injection was A) unsuccessful, i.e. no injection, too shallow, B) successful in injecting into the suprachoroidal space, or C) injected into the vitreous cavity, i.e. too deep. The following table presents the test results along with the distance between the distal end of the adjustable stop and the distal edge of the needle tip lumen. The results indicate a main shaft or needle length greater than 0.05 inch (1.25 mm) and less than 0.12 inch (3.00 mm) provide the best results for injection into the suprachoroidal space.













TABLE 2






Standard

Short




Bevel

Bevel




Needle,

Needle,




Distal Stop
Standard
Distal Stop
Short



to
Bevel
to
Bevel


Needle
Distal Edge
Needle
Distal Edge
Needle


Length
of Lumen
Result
of Lumen
Result


(mm)
(in/mm)
(A, B, C)
(in/mm)
(A, B, C)







0.25
0.002/0.06
A
0.003/0.08
A


0.50
0.012/0.31
A
0.013/0.33
A


0.75
0.022/0.56
A
0.023/0.58
A


1.00
0.032/0.81
A
0.033/0.83
A


1.25
0.042/1.06
B
0.043/1.08
B


1.50
0.052/1.31
B
0.052/1.33
B


1.75
0.061/1.56
B
0.062/1.58
B


2.00
0.071/1.81
B
0.072/1.83
B


2.25
0.081/2.06
B
0.082/2.08
B


2.50
0.091/2.31
B
0.092/2.33
C


2.75
0.101/2.56
B
0.102/2.58
C


3.00
0.111/2.81
C
0.111/2.83
C









Example 13

The device of Example 5 was filled with 0.3 ml of air to act as a fluidic guard. The device was used to access the suprachoroidal space of eyes in anesthetized pigs at the pars plana region of the eye. Once the gas was injected into the suprachoroidal space, the device was used to inject 0.1 ml (4 mg) of triamcinolone acetonide suspension (Kenalog-40, Bristol Meyers Squib). Twelve eyes were injected and three each harvested at 1, 7, 14 and 30 days post injection. The eyes were dissected and 6 mm punches taken from the vitreous, retina, choroid and sclera at four quadrants of the eye and also the posterior retina. The level of drug in the tissues was assayed by solvent extraction of the tissues and quantitation by reverse phase HPLC. The results shown in FIG. 16 demonstrated sustained availability of triamcinolone acetonide in all regions of the eye, including the posterior retina through 30 days with the highest level of drug in the choroid and decreasing levels of drug in the sclera, retina and vitreous.

Claims
  • 1. A method of administering a therapeutic substance to a target region of an eye, the method comprising: inserting a distal end portion of a puncture member into a first portion of the eye,with the distal end portion of the puncture member disposed within the first portion, advancing, automatically in response to reduced resistance provided by the target region, an elongate member relative to the first portion of the eye to displace a second portion of the eye relative to the first portion to at least one of create or expand the target region; the target region being disposed between the first portion and the second portion, and the elongate member having a solid shape including a distal end configured to fit slidably within the puncture member;with the target region created or expanded, withdrawing the elongate member relative to the first portion of the eye; andconveying, through a lumen of the puncture member, the therapeutic substance into the target region.
  • 2. The method of claim 1, wherein the conveying occurs after the withdrawing is initiated.
  • 3. The method of claim 1, further comprising: contacting an outer surface of the eye with a stopper associated with the puncture member to control a depth of entry of the puncture member during the inserting.
  • 4. The method of claim 1, wherein the inserting includes inserting the distal end portion of the puncture member tangentially relative to a natural curvature of the eye.
  • 5. The method of claim 1, wherein the elongate member is a wire.
  • 6. The method of claim 5, wherein the distal end of the wire is rounded.
  • 7. The method of claim 1, wherein the puncture member is a hollow needle.
  • 8. The method of claim 1, further comprising viewing, via an imaging system that is external to the eye, the elongate member extending beyond a terminal end of the puncture member and being in contact with the second portion, and the distal end portion of the puncture member within the target region.
  • 9. The method of claim 1, wherein the puncture member is associated with a syringe configured to convey the therapeutic substance through the lumen of the puncture member.
  • 10. The method of claim 1, wherein the elongate member has a blunt tip.
  • 11. The method of claim 1, wherein the first portion is a sclera of the eye, the second portion is a choroid of the eye, and the target region is a suprachoroidal space of the eye.
  • 12. The method of claim 1, wherein the target region is a subretinal space of the eye.
  • 13. The method of claim 1, wherein the advancing the elongate member includes advancing the elongate member through the lumen of the puncture member to displace the second portion of the eye.
  • 14. The method of claim 1, further comprising, prior to the inserting, dissecting an outer portion of the eye.
  • 15. The method of claim 1, wherein the first portion is a sclera of the eye, the second portion is a choroid of the eye, and the target region is a suprachoroidal space of the eye (SCS), the advancing the elongate member includes advancing the elongate member through the lumen of the puncture member to displace the choroid of the eye relative to the sclera to at least one of create or expand the SCS.
  • 16. The method of claim 15, wherein the elongate member has a blunt tip, and further comprising: viewing, via an imaging system that is external to the eye, the elongate member extending beyond a terminal end of the puncture member and being in contact with the choroid, and the distal end portion of the puncture member within the SCS.
  • 17. The method of claim 1, wherein the elongate member is operably coupled to an energy storage member, and the advancing includes the energy storage member exerting a force on the elongate member that is insufficient to advance the elongate member when the distal end of the elongate member is in the first portion but sufficient to advance the elongate member when the distal end of the elongate member is in the target region.
  • 18. The method of claim 1, wherein the elongate member is operably coupled to a spring, and the advancing includes the spring exerting a force on the elongate member that is insufficient to advance the elongate member when the distal end of the elongate member is in the first portion but sufficient to advance the elongate member when the distal end of the elongate member is in the target region.
  • 19. The method of claim 1, wherein the elongate member is substantially linear.
  • 20. The method of claim 1, wherein the elongate member has a substantially constant cross-sectional area.
  • 21. A method of administering a therapeutic substance to a target region of an eye, the method comprising: inserting a distal end portion of a puncture member into a first portion of the eye;with the distal end portion of the puncture member disposed in the first portion of the eye, advancing an elongate member relative to the first portion of the eye to displace a second portion of the eye relative to the first portion to at least one of create or expand the target region; the elongate member being solid and having a distal end, the distal end of the elongate member configured to fit slidably within the puncture member, and the target region being disposed between the first portion and the second portion;with the target region created or expanded, withdrawing the elongate member relative to the first portion of the eye; andconveying the therapeutic substance into the target region.
  • 22. The method of claim 21, wherein the conveying includes conveying the therapeutic substance through a lumen defined by the puncture member.
  • 23. The method of claim 22, wherein the elongate member is flexible.
  • 24. The method of claim 22, wherein the first portion is a sclera of the eye, the second portion is a choroid of the eye, and the target region is a suprachoroidal space of the eye.
  • 25. The method of claim 22, wherein the advancing the elongate member includes advancing the elongate member through a lumen of the puncture member to displace the second portion of the eye.
  • 26. The method of claim 21, wherein the elongate member is slidably disposed within a lumen defined by the puncture member.
  • 27. The method of claim 21, further comprising: contacting an outer surface of the eye with a stopper associated with the puncture member to control a depth of entry of the puncture member during the inserting.
  • 28. The method of claim 21, wherein the inserting includes inserting the distal end portion of the puncture member tangentially relative to a natural curvature of the eye.
  • 29. The method of claim 21, wherein the elongate member has an atraumatic distal end.
  • 30. A method of administering a therapeutic substance to a target region of an eye, the method comprising: inserting a distal end portion of a puncture member through a first portion of the eye and towards the target region;as the distal end portion of the puncture member reaches the target region, advancing, with a force provided by a compressive element, an elongate member distally relative to and through a lumen defined by the puncture member to displace a second portion of the eye relative to the first portion to at least one of create or expand the target region; the target region being disposed between the first portion and the second portion, and the elongate member being solid and configured to slidably fit fully within the lumen; andwith the target region created or expanded, completely removing the elongate member from the first portion of the eye; andconveying the therapeutic substance into the target region.
  • 31. The method of claim 30, wherein the inserting includes inserting the distal end portion of the puncture member tangentially relative to a natural curvature of the eye.
  • 32. The method of claim 30, wherein the elongate member has an atraumatic distal end.
  • 33. The method of claim 30, wherein the elongate member is flexible.
  • 34. The method of claim 30, wherein the first portion is a sclera of the eye, the second portion is a choroid of the eye, and the target region is a suprachoroidal space of the eye.
  • 35. The method of claim 30, wherein the conveying includes conveying the therapeutic substance through the lumen of the puncture member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/208,235, entitled “Device for Ocular Access,” filed Mar. 22, 2021, which is a continuation of U.S. patent application Ser. No. 15/872,206, entitled “Device for Ocular Access,” filed Jan. 16, 2018, now U.S. Pat. No. 10,952,894, which is a continuation of U.S. patent application Ser. No. 14/821,310, entitled “Device for Ocular Access,” filed Aug. 7, 2015, now abandoned, which is a continuation of U.S. patent application Ser. No. 13/273,775, entitled “Device for Ocular Access,” filed Oct. 14, 2011, now abandoned, which claims priority to U.S. Provisional Application Ser. No. 61/393,741, entitled “Device for Ocular Access,” filed Oct. 15, 2010, the entirety of each of which is incorporated herein by reference.

US Referenced Citations (649)
Number Name Date Kind
1527291 Zorraquin Feb 1925 A
2187259 Barnhart Jan 1940 A
2623521 Shaw Dec 1952 A
2841145 Epps Jul 1958 A
2939459 Lazarte et al. Jun 1960 A
3376999 De Hart et al. Apr 1968 A
3477432 Shaw et al. Nov 1969 A
3739947 Baumann et al. Jun 1973 A
3762540 Baumann et al. Oct 1973 A
3788320 Dye Jan 1974 A
3838690 Friedman Oct 1974 A
3892311 Sneider Jul 1975 A
3962430 O'Neill Jun 1976 A
3964482 Gerstel et al. Jun 1976 A
4226328 Beddow Oct 1980 A
4230112 Smith Oct 1980 A
4303071 Smith Dec 1981 A
4317448 Smith Mar 1982 A
4377897 Eichenbaum et al. Mar 1983 A
4383530 Bruno May 1983 A
4417887 Koshi Nov 1983 A
4432964 Shell et al. Feb 1984 A
4501363 Isbey, Jr. Feb 1985 A
4525346 Stark Jun 1985 A
4564016 Maurice et al. Jan 1986 A
4573993 Hoag et al. Mar 1986 A
4601708 Jordan Jul 1986 A
4615331 Kramann Oct 1986 A
4627841 Dorr Dec 1986 A
4662870 Augustine May 1987 A
4662878 Lindmayer May 1987 A
4689040 Thompson Aug 1987 A
4708147 Haaga Nov 1987 A
4717383 Phillips et al. Jan 1988 A
4736850 Bowman et al. Apr 1988 A
4755169 Sarnoff et al. Jul 1988 A
4795432 Karczmer Jan 1989 A
4804371 Vaillancourt Feb 1989 A
4826490 Byrne et al. May 1989 A
4826871 Gressel et al. May 1989 A
4883483 Lindmayer Nov 1989 A
4889529 Haindl Dec 1989 A
4941874 Sandow et al. Jul 1990 A
4966773 Gressel et al. Oct 1990 A
5015240 Soproni et al. May 1991 A
5023087 Yau-Young Jun 1991 A
5024662 Menes et al. Jun 1991 A
5025811 Dobrogowski et al. Jun 1991 A
5057072 Phipps Oct 1991 A
5066276 Wang Nov 1991 A
5098389 Cappucci Mar 1992 A
5100394 Dudar et al. Mar 1992 A
5104381 Gresl Apr 1992 A
5137447 Hunter Aug 1992 A
5137509 Freitas Aug 1992 A
5164188 Wong Nov 1992 A
5172807 Dragan et al. Dec 1992 A
5181909 McFarlane Jan 1993 A
5206267 Shulman Apr 1993 A
5211638 Dudar et al. May 1993 A
5273530 Del Cerro et al. Dec 1993 A
5279564 Taylor Jan 1994 A
5284474 Adair Feb 1994 A
5292310 Yoon Mar 1994 A
5295972 Mischenko Mar 1994 A
5295974 O'Laughlin Mar 1994 A
5300084 Johnson Apr 1994 A
5312361 Zadini et al. May 1994 A
5320609 Haber et al. Jun 1994 A
5354286 Mesa et al. Oct 1994 A
5358489 Wyrick Oct 1994 A
5364373 Waskonig et al. Nov 1994 A
5364374 Morrison et al. Nov 1994 A
5364734 Pawlowski et al. Nov 1994 A
5395310 Untereker et al. Mar 1995 A
5397313 Gross Mar 1995 A
5399159 Chin et al. Mar 1995 A
5401247 Yoon Mar 1995 A
5407070 Bascos et al. Apr 1995 A
5409457 Del Cerro et al. Apr 1995 A
5443505 Wong et al. Aug 1995 A
5454409 McAffer et al. Oct 1995 A
5527306 Haining Jun 1996 A
5538503 Henley Jul 1996 A
5547467 Pliquett et al. Aug 1996 A
5575780 Saito Nov 1996 A
5632740 Koch et al. May 1997 A
5658256 Shields Aug 1997 A
D383049 Concari et al. Sep 1997 S
5667491 Pliquett et al. Sep 1997 A
5681825 Lindqvist et al. Oct 1997 A
5752942 Doyle et al. May 1998 A
5766198 Li Jun 1998 A
5766242 Wong et al. Jun 1998 A
5767079 Glaser et al. Jun 1998 A
5779668 Grabenkort Jul 1998 A
5788679 Gravlee, Jr. Aug 1998 A
5792099 DeCamp et al. Aug 1998 A
5817075 Giungo Oct 1998 A
5824072 Wong Oct 1998 A
5839715 Leinsing Nov 1998 A
5893397 Peterson et al. Apr 1999 A
5911223 Weaver et al. Jun 1999 A
5919158 Saperstein et al. Jul 1999 A
5951520 Burzynski Sep 1999 A
5952378 Stjernschantz et al. Sep 1999 A
5968022 Saito Oct 1999 A
6003566 Thibault et al. Dec 1999 A
6039093 Mrotzek et al. Mar 2000 A
6059111 Davila et al. May 2000 A
6083199 Thorley et al. Jul 2000 A
6139534 Niedospial, Jr. et al. Oct 2000 A
6143329 Kim Nov 2000 A
6149623 Reynolds Nov 2000 A
6154671 Parel et al. Nov 2000 A
6159218 Aramant et al. Dec 2000 A
6189580 Thibault et al. Feb 2001 B1
6209738 Jansen et al. Apr 2001 B1
6258078 Thilly Jul 2001 B1
6280470 Peyman Aug 2001 B1
6299603 Hecker et al. Oct 2001 B1
6309347 Takahashi et al. Oct 2001 B1
6309374 Hecker et al. Oct 2001 B1
6319225 Sugita et al. Nov 2001 B1
6319240 Beck Nov 2001 B1
6334856 Allen et al. Jan 2002 B1
6378526 Bowman et al. Apr 2002 B1
6378714 Jansen et al. Apr 2002 B1
6379340 Zinger et al. Apr 2002 B1
6387078 Gillespie, III May 2002 B1
6397849 Bowman et al. Jun 2002 B1
6413245 Yaacobi et al. Jul 2002 B1
6432090 Brunel Aug 2002 B1
6491670 Toth et al. Dec 2002 B1
6494865 Alchas Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6503240 Niedospial, Jr. et al. Jan 2003 B1
6517523 Kaneko et al. Feb 2003 B1
6524581 Adamis Feb 2003 B1
6530904 Edwards et al. Mar 2003 B1
6540725 Ponzi Apr 2003 B1
6544246 Niedospial, Jr. Apr 2003 B1
6546283 Beck et al. Apr 2003 B1
6551299 Miyoshi et al. Apr 2003 B2
6558361 Yeshurun May 2003 B1
6564630 Klemp May 2003 B1
6568439 Se et al. May 2003 B1
6569123 Alchas et al. May 2003 B2
6571837 Jansen et al. Jun 2003 B2
6589202 Powell Jul 2003 B1
6601721 Jansen et al. Aug 2003 B2
6611707 Prausnitz et al. Aug 2003 B1
6622864 Debbs et al. Sep 2003 B1
6626309 Jansen et al. Sep 2003 B1
6638244 Reynolds Oct 2003 B1
6656433 Sasso Dec 2003 B2
6715520 Andreasson et al. Apr 2004 B2
6729370 Norton et al. May 2004 B2
6738526 Betrisey et al. May 2004 B1
6743211 Prausnitz et al. Jun 2004 B1
6773916 Thiel et al. Aug 2004 B1
D499153 Kuo Nov 2004 S
6832994 Niedospial, Jr. et al. Dec 2004 B2
6875205 Leinsing Apr 2005 B2
6883222 Landau Apr 2005 B2
6918889 Brunel Jul 2005 B1
6929623 Stone Aug 2005 B2
6936053 Weiss Aug 2005 B1
6957745 Thibault et al. Oct 2005 B2
6979316 Rubin et al. Dec 2005 B1
6997917 Niedospial, Jr. et al. Feb 2006 B2
7025389 Cuschieri et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7150735 Hickle Dec 2006 B2
7207965 Simon Apr 2007 B2
7207980 Christian et al. Apr 2007 B2
7211062 Kwon May 2007 B2
7214212 Pommereau et al. May 2007 B2
7226439 Prausnitz et al. Jun 2007 B2
7316676 Peyman et al. Jan 2008 B2
7326194 Zinger et al. Feb 2008 B2
7425207 Miller et al. Sep 2008 B2
7435237 Tan Oct 2008 B2
7468057 Ponzi Dec 2008 B2
7470257 Norton et al. Dec 2008 B2
7488308 Lesch, Jr. Feb 2009 B2
7510547 Fangrow Mar 2009 B2
7510548 Fangrow Mar 2009 B2
D590690 Bertini Apr 2009 S
D598543 Vogel et al. Aug 2009 S
7569035 Wilmot et al. Aug 2009 B1
7615041 Sullivan et al. Nov 2009 B2
7632261 Zinger et al. Dec 2009 B2
7648482 Edwards et al. Jan 2010 B2
7648491 Rogers Jan 2010 B2
7678077 Harris et al. Mar 2010 B2
7678078 Peyman et al. Mar 2010 B1
7722581 Peyman May 2010 B2
7799009 Niedospial, Jr. et al. Sep 2010 B2
7879018 Zinger et al. Feb 2011 B2
7914803 Chowhan et al. Mar 2011 B2
7918814 Prausnitz et al. Apr 2011 B2
7918874 Siegal Apr 2011 B2
7947660 Clark et al. May 2011 B2
7967772 McKenzie et al. Jun 2011 B2
7975733 Horppu et al. Jul 2011 B2
7981101 Walsh Jul 2011 B2
8003124 Varner et al. Aug 2011 B2
8009162 Takatori Aug 2011 B2
8016809 Zinger et al. Sep 2011 B2
8025653 Capitaine et al. Sep 2011 B2
8034105 Stegmann et al. Oct 2011 B2
8070739 Zinger et al. Dec 2011 B2
8099162 Roy Jan 2012 B2
8114110 Bednarek et al. Feb 2012 B2
8123729 Yamamoto et al. Feb 2012 B2
8123736 Kraushaar et al. Feb 2012 B2
8128960 Kabra et al. Mar 2012 B2
8137312 Sundar et al. Mar 2012 B2
8157784 Rogers Apr 2012 B2
8162914 Kraushaar et al. Apr 2012 B2
8167863 Yow May 2012 B2
8172830 Christian et al. May 2012 B2
8173617 Clark et al. May 2012 B2
8177768 Leinsing May 2012 B2
8187248 Zihlmann May 2012 B2
8192408 Nazzaro et al. Jun 2012 B2
8197435 Prausnitz et al. Jun 2012 B2
8197443 Sundar et al. Jun 2012 B2
8197459 Jansen et al. Jun 2012 B2
8221353 Cormier et al. Jul 2012 B2
8225826 Horppu et al. Jul 2012 B2
8235967 Chevallier et al. Aug 2012 B2
D667111 Robinson Sep 2012 S
8257336 Zihlmann Sep 2012 B2
8262641 Vedrine et al. Sep 2012 B2
8287494 Ma Oct 2012 B2
8303599 Hess et al. Nov 2012 B2
D672506 Szymanski Dec 2012 S
8323227 Hamatake et al. Dec 2012 B2
8328772 Kinast et al. Dec 2012 B2
8337421 Freeman et al. Dec 2012 B2
8337509 Schieber et al. Dec 2012 B2
8348924 Christian et al. Jan 2013 B2
8403941 Peterson et al. Mar 2013 B2
8409165 Niedospial, Jr. et al. Apr 2013 B2
8425473 Ho et al. Apr 2013 B2
8430862 Peyman et al. Apr 2013 B2
8448786 Tomes et al. May 2013 B2
8460242 Paques et al. Jun 2013 B2
8469939 Fangrow, Jr. Jun 2013 B2
8475404 Foshee et al. Jul 2013 B2
8480646 Nord et al. Jul 2013 B2
8506515 Burns et al. Aug 2013 B2
8512309 Shemesh et al. Aug 2013 B2
8529492 Clauson et al. Sep 2013 B2
8535333 De Juan, Jr. et al. Sep 2013 B2
8540692 Fangrow Sep 2013 B2
8545430 Silvestrini Oct 2013 B2
8545554 Novakovic et al. Oct 2013 B2
8562545 Freeman et al. Oct 2013 B2
8571802 Robinson et al. Oct 2013 B2
8574214 Kuhn et al. Nov 2013 B2
8574217 Peyman Nov 2013 B2
8602959 Park et al. Dec 2013 B1
8608723 Lev et al. Dec 2013 B2
8617121 Lanin et al. Dec 2013 B2
8628508 Weitzel et al. Jan 2014 B2
8632589 Helmy Jan 2014 B2
8636713 Prausnitz et al. Jan 2014 B2
8652118 Peyman Feb 2014 B2
8663167 Bartha Mar 2014 B2
8663303 Horvath et al. Mar 2014 B2
8668676 Chang Mar 2014 B2
8685435 Nivaggioli et al. Apr 2014 B2
8702659 Lanin et al. Apr 2014 B2
8727117 Maasarani May 2014 B2
8747365 De Sausmarez Lintell Jun 2014 B2
8752598 Denenburg et al. Jun 2014 B2
8758306 Lopez et al. Jun 2014 B2
8795226 Kuhn et al. Aug 2014 B2
8808225 Prausnitz et al. Aug 2014 B2
8808242 Paques et al. Aug 2014 B2
D713958 Srinivasan et al. Sep 2014 S
8821870 Robinson et al. Sep 2014 B2
D715125 Hung Oct 2014 S
8852137 Horvath et al. Oct 2014 B2
8864740 Schabbach et al. Oct 2014 B2
D718602 Musser Dec 2014 S
D719256 Ohashi Dec 2014 S
8920375 Gonnelli Dec 2014 B2
D726908 Yu et al. Apr 2015 S
D733289 Blanchard et al. Jun 2015 S
D740098 Kuo et al. Oct 2015 S
9180044 Touchard et al. Nov 2015 B2
9180047 Andino et al. Nov 2015 B2
D750223 Andino et al. Feb 2016 S
9539139 Andino et al. Jan 2017 B2
9572800 Zarnitsyn et al. Feb 2017 B2
9636253 Andino et al. May 2017 B1
9636332 Zarnitsyn et al. May 2017 B2
9664926 Mitsui May 2017 B2
9770361 Andino et al. Sep 2017 B2
9788995 Prausnitz et al. Oct 2017 B2
9931330 Zarnitsyn et al. Apr 2018 B2
9937075 Andino et al. Apr 2018 B2
9956114 Andino et al. May 2018 B2
10188550 Andino et al. Jan 2019 B2
10390901 Godfrey et al. Aug 2019 B2
10517756 Andino et al. Dec 2019 B2
10555833 Andino et al. Feb 2020 B2
10632013 Prausnitz et al. Apr 2020 B2
10722396 Andino et al. Jul 2020 B2
10905586 Prausnitz et al. Feb 2021 B2
10952894 Hammack et al. Mar 2021 B2
10973681 Andino et al. Apr 2021 B2
11559428 Andino et al. Jan 2023 B2
11596545 Andino et al. Mar 2023 B2
11752101 Yamamoto et al. Sep 2023 B2
20010008961 Hecker et al. Jul 2001 A1
20010044604 Luther Nov 2001 A1
20010051798 Hochman Dec 2001 A1
20020042594 Lum et al. Apr 2002 A1
20020052580 Ooyauchi May 2002 A1
20020082527 Liu et al. Jun 2002 A1
20020082543 Park et al. Jun 2002 A1
20020108875 Feinberg et al. Aug 2002 A1
20020112981 Cooper et al. Aug 2002 A1
20020142459 Williams et al. Oct 2002 A1
20020156413 Williams et al. Oct 2002 A1
20030009113 Olson Jan 2003 A1
20030050602 Pettis et al. Mar 2003 A1
20030083645 Angel et al. May 2003 A1
20030088204 Joshi May 2003 A1
20030139729 Stegmann et al. Jul 2003 A1
20030171722 Paques et al. Sep 2003 A1
20030233070 De La Serna et al. Dec 2003 A1
20040019331 Yeshurun Jan 2004 A1
20040039253 Peyman et al. Feb 2004 A1
20040049150 Dalton et al. Mar 2004 A1
20040059256 Perez Mar 2004 A1
20040072105 Yeshurun et al. Apr 2004 A1
20040106904 Gonnelli et al. Jun 2004 A1
20040122359 Wenz et al. Jun 2004 A1
20040141925 Bosch et al. Jul 2004 A1
20040164454 Gartstein et al. Aug 2004 A1
20040186084 Alam et al. Sep 2004 A1
20040199130 Chornenky et al. Oct 2004 A1
20040215347 Hayes Oct 2004 A1
20040249404 Haefliger Dec 2004 A1
20040265365 Daddona et al. Dec 2004 A1
20050009910 Hughes et al. Jan 2005 A1
20050033230 Alchas et al. Feb 2005 A1
20050055083 Carranza et al. Mar 2005 A1
20050065137 Jani et al. Mar 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050089545 Kuwano et al. Apr 2005 A1
20050096594 Deslauriers May 2005 A1
20050101582 Lyons et al. May 2005 A1
20050101882 Leira et al. May 2005 A1
20050101967 Weber et al. May 2005 A1
20050137525 Wang et al. Jun 2005 A1
20050148034 Hariri et al. Jul 2005 A1
20050171507 Christian et al. Aug 2005 A1
20050181017 Hughes et al. Aug 2005 A1
20050203575 Carson et al. Sep 2005 A1
20050209565 Yuzhakov et al. Sep 2005 A1
20050244462 Farooq Nov 2005 A1
20050244463 Huang et al. Nov 2005 A1
20050244469 Whitcup et al. Nov 2005 A1
20050245906 Makower et al. Nov 2005 A1
20050256499 Pettis et al. Nov 2005 A1
20050281862 Karakelle et al. Dec 2005 A1
20060013859 Yamada et al. Jan 2006 A1
20060032768 Hamai et al. Feb 2006 A1
20060036318 Foulkes Feb 2006 A1
20060055090 Lee et al. Mar 2006 A1
20060084942 Kim et al. Apr 2006 A1
20060086689 Raju Apr 2006 A1
20060089607 Chen Apr 2006 A1
20060141049 Lyons et al. Jun 2006 A1
20060173418 Rinaudo et al. Aug 2006 A1
20060178614 Nemati Aug 2006 A1
20060189608 Bingaman Aug 2006 A1
20060195187 Stegmann et al. Aug 2006 A1
20060202385 Xu et al. Sep 2006 A1
20060229562 Marsh et al. Oct 2006 A1
20060233858 Tzekov et al. Oct 2006 A1
20060259008 Orilla Nov 2006 A1
20060271025 Jones et al. Nov 2006 A1
20070016103 Calasso et al. Jan 2007 A1
20070060927 Longson et al. Mar 2007 A1
20070073197 Prausnitz et al. Mar 2007 A1
20070082841 Higuchi et al. Apr 2007 A1
20070093742 Higuchi et al. Apr 2007 A1
20070093877 Beecham et al. Apr 2007 A1
20070129693 Hunter et al. Jun 2007 A1
20070149944 Tashiro et al. Jun 2007 A1
20070151882 Cocheteux et al. Jul 2007 A1
20070178197 LaRue et al. Aug 2007 A1
20070191863 De Juan, Jr. et al. Aug 2007 A1
20070202116 Burnie et al. Aug 2007 A1
20070202186 Yamamoto et al. Aug 2007 A1
20070224278 Lyons et al. Sep 2007 A1
20070225654 Hess et al. Sep 2007 A1
20070233037 Gifford, III et al. Oct 2007 A1
20070260201 Prausnitz et al. Nov 2007 A1
20070270745 Nezhat et al. Nov 2007 A1
20070270768 Dacquay et al. Nov 2007 A1
20070282405 Wong, Jr. et al. Dec 2007 A1
20070287985 Estes et al. Dec 2007 A1
20070299386 Peyman Dec 2007 A1
20080008762 Robinson et al. Jan 2008 A1
20080015539 Pieroni et al. Jan 2008 A1
20080027371 Higuchi et al. Jan 2008 A1
20080033351 Trogden et al. Feb 2008 A1
20080058704 Hee et al. Mar 2008 A1
20080058717 Spector Mar 2008 A1
20080065002 Lobl et al. Mar 2008 A1
20080071246 Nazzaro et al. Mar 2008 A1
20080082841 Juenemann et al. Apr 2008 A1
20080097335 Trogden et al. Apr 2008 A1
20080097346 Charles Apr 2008 A1
20080097390 Dacquay et al. Apr 2008 A1
20080131484 Robinson et al. Jun 2008 A1
20080152694 Lobl et al. Jun 2008 A1
20080177239 Li et al. Jul 2008 A1
20080183123 Behar-Cohen et al. Jul 2008 A1
20080200883 Tomono Aug 2008 A1
20080208255 Siegal Aug 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080234625 Dacquay et al. Sep 2008 A1
20080300634 Gray Dec 2008 A1
20090030381 Lind et al. Jan 2009 A1
20090076463 Attinger Mar 2009 A1
20090081277 Robinson et al. Mar 2009 A1
20090082321 Edelman et al. Mar 2009 A1
20090082713 Friden Mar 2009 A1
20090088721 De Bizemont et al. Apr 2009 A1
20090105749 De Juan et al. Apr 2009 A1
20090148527 Robinson et al. Jun 2009 A1
20090187167 Sexton et al. Jul 2009 A1
20090259180 Choi Oct 2009 A1
20090287161 Traub et al. Nov 2009 A1
20090312782 Park Dec 2009 A1
20100010004 Van Emelen et al. Jan 2010 A1
20100010452 Paques et al. Jan 2010 A1
20100012537 Farrar et al. Jan 2010 A1
20100015158 Robinson et al. Jan 2010 A1
20100030150 Paques et al. Feb 2010 A1
20100057011 Charles Mar 2010 A1
20100074925 Carmon Mar 2010 A1
20100074957 Robinson et al. Mar 2010 A1
20100081707 Ali Apr 2010 A1
20100098772 Robinson et al. Apr 2010 A1
20100100054 Cormier et al. Apr 2010 A1
20100152646 Girijavallabhan et al. Jun 2010 A1
20100152667 Kietzmann Jun 2010 A1
20100152676 Clements et al. Jun 2010 A1
20100160889 Smith et al. Jun 2010 A1
20100173866 Hee et al. Jul 2010 A1
20100191176 Ho et al. Jul 2010 A1
20100191177 Chang Jul 2010 A1
20100211079 Aramant Aug 2010 A1
20100241102 Ma Sep 2010 A1
20100256597 Prausnitz et al. Oct 2010 A1
20100312120 Meier Dec 2010 A1
20100318034 Goncalves Dec 2010 A1
20110004265 Wenger et al. Jan 2011 A1
20110022023 Weitzel et al. Jan 2011 A1
20110060310 Prestrelski et al. Mar 2011 A1
20110112546 Juan, Jr. et al. May 2011 A1
20110152775 Lopez et al. Jun 2011 A1
20110166531 Stroumpoulis et al. Jul 2011 A1
20110202012 Bartlett Aug 2011 A1
20110213317 Chen et al. Sep 2011 A1
20110238075 Clauson et al. Sep 2011 A1
20110243999 Dellamary et al. Oct 2011 A1
20110264028 Ramdas et al. Oct 2011 A1
20110282298 Agian et al. Nov 2011 A1
20110288492 Holmqvist Nov 2011 A1
20110295152 Sasaki et al. Dec 2011 A1
20110306923 Roy Dec 2011 A1
20120004245 May et al. Jan 2012 A1
20120008327 Brennan et al. Jan 2012 A1
20120024987 Nagele Nacken Feb 2012 A1
20120029360 Hendriks et al. Feb 2012 A1
20120035524 Silvestrini Feb 2012 A1
20120059346 Sheppard et al. Mar 2012 A1
20120078224 Lerner et al. Mar 2012 A1
20120083727 Barnett Apr 2012 A1
20120095414 Lanin et al. Apr 2012 A1
20120095438 Lanin et al. Apr 2012 A1
20120101475 Wilmot et al. Apr 2012 A1
20120116306 Heald et al. May 2012 A1
20120123351 Lanin et al. May 2012 A1
20120123386 Tsals May 2012 A1
20120123437 Horvath et al. May 2012 A1
20120123440 Horvath et al. May 2012 A1
20120123473 Hernandez May 2012 A1
20120130207 O'Dea et al. May 2012 A1
20120136318 Lanin et al. May 2012 A1
20120150128 Zhao Jun 2012 A1
20120157880 Haselby et al. Jun 2012 A1
20120165723 Horvath et al. Jun 2012 A1
20120191064 Conston et al. Jul 2012 A1
20120197208 Bruggemann et al. Aug 2012 A1
20120197218 Timm Aug 2012 A1
20120203193 Rogers Aug 2012 A1
20120220917 Silvestrini et al. Aug 2012 A1
20120226260 Prausnitz et al. Sep 2012 A1
20120232522 Prausnitz et al. Sep 2012 A1
20120259288 Wagner et al. Oct 2012 A1
20120265149 Lerner et al. Oct 2012 A1
20120271272 Hammack et al. Oct 2012 A1
20120296307 Holt et al. Nov 2012 A1
20130035662 Decker et al. Feb 2013 A1
20130040895 Robinson et al. Feb 2013 A1
20130041265 Sostek et al. Feb 2013 A1
20130060202 Thorley et al. Mar 2013 A1
20130065888 Cetina-Cizmek et al. Mar 2013 A1
20130072900 Colantonio Mar 2013 A1
20130079716 Thorley et al. Mar 2013 A1
20130096533 Freeman et al. Apr 2013 A1
20130102973 Thorley et al. Apr 2013 A1
20130116523 Jung, II et al. May 2013 A1
20130138049 Kemp et al. May 2013 A1
20130140208 Hemmann Jun 2013 A1
20130150803 Shetty et al. Jun 2013 A1
20130190694 Barrow-Williams et al. Jul 2013 A1
20130211335 Paques et al. Aug 2013 A1
20130216623 Yamamoto et al. Aug 2013 A1
20130218102 Iwase et al. Aug 2013 A1
20130218269 Schachar et al. Aug 2013 A1
20130226103 Papiorek Aug 2013 A1
20130237910 Shetty et al. Sep 2013 A1
20130237916 Hanson et al. Sep 2013 A1
20130245600 Yamamoto et al. Sep 2013 A1
20130253416 Rotenstreich Sep 2013 A1
20130289545 Baerveldt et al. Oct 2013 A1
20130295006 Christoforidis et al. Nov 2013 A1
20130331786 Hofmann Dec 2013 A1
20130338612 Smith et al. Dec 2013 A1
20140010823 Robinson et al. Jan 2014 A1
20140012226 Hochman Jan 2014 A1
20140018771 Shekalim Jan 2014 A1
20140027326 Peruzzo Jan 2014 A1
20140031833 Novakovic et al. Jan 2014 A1
20140039391 Clarke et al. Feb 2014 A1
20140039413 Jugl et al. Feb 2014 A1
20140078854 Head et al. Mar 2014 A1
20140088552 Soni et al. Mar 2014 A1
20140094752 Hiles Apr 2014 A1
20140102927 Liversidge Apr 2014 A1
20140107566 Prausnitz et al. Apr 2014 A1
20140114243 Smith et al. Apr 2014 A1
20140124528 Fangrow May 2014 A1
20140135716 Clarke et al. May 2014 A1
20140194834 Passaglia Jul 2014 A1
20140200518 Ekman et al. Jul 2014 A1
20140224688 Slemmen et al. Aug 2014 A1
20140231287 Tomes et al. Aug 2014 A1
20140236098 Mica et al. Aug 2014 A1
20140243754 Clarke et al. Aug 2014 A1
20140249539 Mica et al. Sep 2014 A1
20140257207 Clarke et al. Sep 2014 A1
20140261727 Mansour et al. Sep 2014 A1
20140261877 Ivosevic et al. Sep 2014 A1
20140276482 Astafieva et al. Sep 2014 A1
20140276649 Ivosevic et al. Sep 2014 A1
20140296802 Geiger et al. Oct 2014 A1
20140309599 Schaller Oct 2014 A1
20140323979 Henley et al. Oct 2014 A1
20140323985 Hourmand et al. Oct 2014 A1
20140330213 Hourmand et al. Nov 2014 A1
20140350479 Hourmand et al. Nov 2014 A1
20140353190 Okihara et al. Dec 2014 A1
20150013827 Kuhn Jan 2015 A1
20150013835 Cordes Jan 2015 A1
20150025474 Riedel et al. Jan 2015 A1
20150038905 Andino et al. Feb 2015 A1
20150045731 Gupta et al. Feb 2015 A1
20150045744 Gupta et al. Feb 2015 A1
20150051545 Henderson et al. Feb 2015 A1
20150051581 Andino et al. Feb 2015 A1
20150110717 Distel et al. Apr 2015 A1
20150129456 Miller et al. May 2015 A1
20150133415 Whitcup May 2015 A1
20150157359 Shinzato et al. Jun 2015 A1
20150209180 Prausnitz et al. Jul 2015 A1
20150223977 Oberkircher et al. Aug 2015 A1
20150258120 Zarnitsyn et al. Sep 2015 A1
20150297609 Shah et al. Oct 2015 A1
20150320596 Gifford, III et al. Nov 2015 A1
20160015895 Blondino et al. Jan 2016 A1
20160015908 Uemura et al. Jan 2016 A1
20160022486 Clauson et al. Jan 2016 A1
20160106584 Andino et al. Apr 2016 A1
20160106587 Jarrett et al. Apr 2016 A1
20160166819 Simmers Jun 2016 A1
20160193080 Hammack et al. Jul 2016 A1
20160199581 Cachemaille et al. Jul 2016 A1
20160206628 Zarnitsyn et al. Jul 2016 A1
20160213662 Zarnitsyn et al. Jul 2016 A1
20160310417 Prausnitz et al. Oct 2016 A1
20160331738 Jarrett et al. Nov 2016 A1
20160354239 Roy Dec 2016 A1
20160354244 Horvath et al. Dec 2016 A1
20170086725 Woo et al. Mar 2017 A1
20170095369 Andino et al. Apr 2017 A1
20170165109 Gunn et al. Jun 2017 A1
20170216228 Asgharian et al. Aug 2017 A1
20170224435 Godfrey et al. Aug 2017 A1
20170224534 Andino et al. Aug 2017 A1
20170273827 Prausnitz et al. Sep 2017 A1
20170290702 Yamamoto et al. Oct 2017 A1
20170333416 Zarnitsyn et al. Nov 2017 A1
20170340560 Yamamoto et al. Nov 2017 A1
20180028358 Andino et al. Feb 2018 A1
20180028516 Zarnitsyn et al. Feb 2018 A1
20180042765 Noronha et al. Feb 2018 A1
20180042767 Andino et al. Feb 2018 A1
20180092897 Zarnitsyn et al. Apr 2018 A1
20180325884 Zarnitsyn et al. Nov 2018 A1
20180333297 Andino et al. Nov 2018 A1
20190000669 Hammack et al. Jan 2019 A1
20190231592 Andino et al. Aug 2019 A1
20190240208 Zarnitsyn et al. Aug 2019 A1
20190269702 White et al. Sep 2019 A1
20190290485 Andino et al. Sep 2019 A1
20190307606 Andino et al. Oct 2019 A1
20190350755 Andino et al. Nov 2019 A1
20200030143 Andino et al. Jan 2020 A1
20200061357 Jung et al. Feb 2020 A1
20200237556 Prausnitz et al. Jul 2020 A1
20200330269 Bley et al. Oct 2020 A1
20200390692 Yamamoto et al. Dec 2020 A1
20210022918 Prausnitz et al. Jan 2021 A1
20210169689 Bley et al. Jun 2021 A1
20210212940 Yamamoto et al. Jul 2021 A1
20210220173 Andino et al. Jul 2021 A1
20210366311 Fisher et al. Nov 2021 A1
20210393436 Prausnitz et al. Dec 2021 A1
20220062040 Hammack et al. Mar 2022 A1
20220280386 Andino et al. Sep 2022 A1
20220347014 Yamamoto et al. Nov 2022 A1
20230157869 Andino et al. May 2023 A1
20230363941 Andino et al. Nov 2023 A1
20230372235 Yamamoto Nov 2023 A1
Foreign Referenced Citations (110)
Number Date Country
2639322 Mar 2009 CA
1229679 Sep 1999 CN
1604799 Apr 2005 CN
1608587 Apr 2005 CN
1674954 Sep 2005 CN
1681547 Oct 2005 CN
1706365 Dec 2005 CN
1736474 Feb 2006 CN
1946445 Apr 2007 CN
101031256 Sep 2007 CN
101052434 Oct 2007 CN
101351239 Jan 2009 CN
201192452 Feb 2009 CN
101559249 Oct 2009 CN
201356711 Dec 2009 CN
201591741 Sep 2010 CN
101854891 Oct 2010 CN
101959519 Jan 2011 CN
103037802 Apr 2013 CN
103209733 Jul 2013 CN
103857431 Jun 2014 CN
204364577 Jun 2015 CN
006961 Jun 2006 EA
1188456 Mar 2002 EP
1568359 Aug 2005 EP
2193821 Jun 2010 EP
2307055 Apr 2011 EP
2001525826 Dec 2001 JP
2009183441 Aug 2009 JP
2009531298 Sep 2009 JP
2010234034 Oct 2010 JP
2013543418 Dec 2013 JP
5828535 Dec 2015 JP
20040096561 Nov 2004 KR
14351 Jul 2000 RU
2344767 Jan 2009 RU
2353393 Apr 2009 RU
2428956 Sep 2011 RU
WO-1992008406 May 1992 WO
WO-1992020389 Nov 1992 WO
WO-1994001124 Jan 1994 WO
WO-1994012217 Jun 1994 WO
WO-1996009838 Apr 1996 WO
WO-1998051348 Nov 1998 WO
WO-2000007530 Feb 2000 WO
WO-2000007565 Feb 2000 WO
WO-0117589 Mar 2001 WO
WO-2001041685 Jun 2001 WO
WO-2002058769 Aug 2002 WO
WO-2003002094 Jan 2003 WO
WO-2003024507 Mar 2003 WO
WO-2003039633 May 2003 WO
WO-2004000389 Dec 2003 WO
WO-2004105864 Dec 2004 WO
WO-2005011741 Feb 2005 WO
WO-2005032510 Apr 2005 WO
WO-2005046641 May 2005 WO
WO-2005069831 Aug 2005 WO
WO-2005072701 Aug 2005 WO
WO-2005074942 Aug 2005 WO
WO-2005107845 Nov 2005 WO
WO-2006004595 Jan 2006 WO
WO-2006020714 Feb 2006 WO
WO-2006042252 Apr 2006 WO
WO-2006058189 Jun 2006 WO
WO-2006128034 Nov 2006 WO
WO-2006138719 Dec 2006 WO
WO-2007069697 Jun 2007 WO
WO-2007099406 Sep 2007 WO
WO-2007100745 Sep 2007 WO
WO-2007130105 Nov 2007 WO
WO-2007131050 Nov 2007 WO
WO-2007150018 Dec 2007 WO
WO-2008082637 Jul 2008 WO
WO-2009067325 May 2009 WO
WO-2009105534 Aug 2009 WO
WO-2009114521 Sep 2009 WO
WO-2010009034 Jan 2010 WO
WO-2010054660 May 2010 WO
WO-2010132751 Nov 2010 WO
WO-2011057065 May 2011 WO
WO-2011123722 Oct 2011 WO
WO-2011139713 Nov 2011 WO
WO-2012019136 Feb 2012 WO
WO-2012051575 Apr 2012 WO
WO-2012118498 Sep 2012 WO
WO-2012125869 Sep 2012 WO
WO-2012125872 Sep 2012 WO
WO-2012162459 Nov 2012 WO
WO-2013050236 Apr 2013 WO
WO-2013098166 Jul 2013 WO
WO-2013151904 Oct 2013 WO
WO-2014028285 Feb 2014 WO
WO-2014036009 Mar 2014 WO
WO-2014179698 Nov 2014 WO
WO-2014197317 Dec 2014 WO
WO-2015015467 Feb 2015 WO
WO-2015095772 Jun 2015 WO
WO-2015110660 Jul 2015 WO
WO-2015195842 Dec 2015 WO
WO-2015196085 Dec 2015 WO
WO-2016042162 Mar 2016 WO
WO-2016042163 Mar 2016 WO
WO-2017120600 Jul 2017 WO
WO-2017120601 Jul 2017 WO
WO-2017139375 Aug 2017 WO
WO-2017190142 Nov 2017 WO
WO-2017192565 Nov 2017 WO
WO-2022076938 Apr 2022 WO
WO-2024015652 Jan 2024 WO
Non-Patent Literature Citations (253)
Entry
Abbott Laboratories Inc., Abbott Park, Illinois, USA, Abbott Medical Optics, “HEALON5 OVD,” 2004, [online]. Retrieved from the Interent: URL: http://abbottmedicaloptics.com/products/cataract/ovds/healon5-viscoelastic. Retrieved from the Internet on: Aug. 16, 2016, 5 pages.
Anthem, USA, “Medical Policy. Suprachoroidal Injection of a Pharmacologic Agent, ” Last Review Date: Nov. 14, 2013, [online]. Retrieved from the Internet: URL: http://www.anthem.com/medicalpolicies/policies/mp_pw_b076412.htm. Retrieved from the Internet on: Oct. 24, 2014, American Medical Association, 3 pages.
Beer, P. J. et al., “Photographic Evidence of Vitreous Wicks After Intravitreal Injections,” Retina Today, 2(2):24-39 (Mar. 2007).
Berglin, L. C. et al., “Tracing of Suprachoroidally Microneedle Injected Labled Drugs and Microbeads in Human, Pig and Rabbit Tissue Using Liquid Nitrogen Snap-Freeze Thaw and Lypholization Techniques,” Invest Ophthalmol Vis Sci., 51:E-Abstract 5330 (2010), 2 pages.
Brown, D. M., “Aflibercept for Treatment of Diabetic Macular Edema,” Retina Today, Jul./Aug. 2011, pp. 59-60.
Careforde Healthcare, B Braun Glass Loss-Of-Resistance Syringes # 332158-10cc Glass Loss-Of-Resistance Syringe, Luer Slip Metal Tip, 10/cs, (2014), 2 pages.
Careforde Inc., Careforde Healthcare, Chicago, IL, “B Braun Glass Loss-Of-Resistance Syringes # 332155-5cc Glass Loss-Of-Resistance Syringe, Luer Lock Metal Tip, 10/cs,” [online]. Retrieved from the Internet: http://careforde.com/b-braun-glass-loss-of-resistance- syringes-332155-5cc-glass-loss-of-resistance-syringe-luer-lock-metal-tip-10-cs/. Retrieved from the Internet on: Oct. 16, 2014, (2014), 2 pages.
Careforde Inc., Careforde Healthcare, Chicago, IL, “B Braun Perifix Plastic Loss-Of-Resistance Syringes # 332152-8cc Plastic Luer Lock Loss-of-Resistance Syringe, 50/cs,” [online]. Retrieved from the Internet: http://careforde.com/b-braun-perifix-plastic-loss-of-resistance-syringes-332152-8cc-plastic-luer-lock-loss-of-resistance-syringe-50-cs/. Retrieved from the Internet on: Oct. 16, 2014, (2014), 2 pages.
Choy, Y. B. et al., “Mucoadhesive microdiscs engineered for ophthalmic drug delivery: effect of particle geometry and fomulation on preocular residence time,” Investigative Ophthalmology & Visual Science, 49:4808-4815 (2008).
Dinning, W. J., “Steroids and the eye-indications and complications,” Postgraduate Medical Journal, vol. 52, 1976, pp. 634-638.
Doncaster and Bassetlaw Hospitals, Nhs Foundation Trust, Department of Ophthalmology, “Intravitreal injection of triamcinolone,” Jul. 2010, [online]. Retrieved from the Internet: URL: http://www.dbh.nhs.uk/Library/Patient_Information_Leaflets/WPR32110%20IIT%20No%20crops.pdf, 2 pages.
Edwards, A. et al., “Fiber matrix model of sclera and corneal stroma for drug delivery to the eye,” AIChE Journal, 44(1):214-225 (1998).
Einmahl, S. et al., “Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye,” Invest. Ophthalmol. Vis. Sci., 43(5):1533-1539 (2002).
Einmahl, S. et al., “Ocular biocompatibility of a poly(ortho ester) characterized by autocatalyzed degradation,” J. Biomed. Mater. Res., 67(1):44-53 (2003).
“Epidural,” Wikipedia [online], retrieved from the internet on Sep. 3, 2014, URL: http:/en.wikipedia.org/wiki/Epidural, 21 pages.
Examination Report for European Application No. 11776049.6, mailed Oct. 25, 2016, 4 pages.
Examination Report for Indian Application No. 201917009102, mailed Jul. 16, 2021, 6 pages.
Examination Report for Singapore Application No. 11201509051V, dated Feb. 1, 2017, 4 pages.
Examination Report No. 1 for Australian Application No. 2014259694, dated May 24, 2018, 2 pages.
Examination Report No. 1 for Australian Application No. 2015230874, dated Jul. 28, 2017, 11 pages.
Extended European Search Report for European Application No. 07751620.1, mailed Jan. 15, 2013, 10 pages.
Extended European Search Report for European Application No. 11777924.9, mailed Feb. 4, 2015, 7 pages.
Extended European Search Report for European Application No. 15810459.6, mailed Apr. 16, 2018, 11 pages.
Extended European Search Report for European Application No. 17750694.6, mailed Sep. 2, 2019, 6 pages.
Extended European Search Report for European Application No. 17880800.2, mailed Jun. 2, 2020, 13 pages.
Extended European Search Report for European Application No. 18176149.5, mailed Jan. 22, 2019, 11 pages.
Extended European Search Report for European Application No. 18176172.7, mailed Feb. 6, 2019, 11 pages.
Extended European Search Report for European Application No. 18199418.7, mailed Jul. 5, 2019, 9 pages.
Extended Search Report for European Application No. 13833318.2, dated Apr. 1, 2016, 7 pages.
Extended Search Report for European Application No. 14791646.4, dated Nov. 21, 2016, 6 pages.
Falkenstein, I. A. et al., “Comparison of visual acuity in macular degeneration patients measured with Snellen and Early Treatment Diabetic Retinopathy study charts,” Ophthalmology 115(2):319-323 (Feb. 2008).
Feldkamp, L. A. et al., “Practical cone-beam algorithm,” J. Opt. Soc. Am. A, 1(6):612-619 (1984).
First Examination Report for Indian Application No. 10270/DELNP/2015, mailed Apr. 5, 2021, 7 pages.
First Examination Report for Indian Application No. 3345/KOLNP/2008, dated May 21, 2015, 3 pages.
First Office Action for Chinese Application No. 200780014501.3, dated Mar. 11, 2010, 6 pages.
First Office Action for Chinese Application No. 201110093644.6, dated Mar. 26, 2012, 11 pages.
First Office Action for Chinese Application No. 201180060268.9, issued Oct. 10, 2014, 9 pages.
First Office Action for Chinese Application No. 201480025034.4, dated Apr. 24, 2018, 10 pages.
First Office Action for Chinese Application No. 201580044250.8, dated Apr. 24, 2018, 14 pages.
First Office Action for Chinese Application No. 201610805842.3, issued Jul. 21, 2017, 4 pages.
First Office Action for Chinese Application No. 201780062253.3, mailed Dec. 25, 2020, 22 pages.
First Office Action for Chinese Application No. 201910430078.X, issued Feb. 1, 2021, 8 pages.
Furrer, P. et al., “Ocular tolerance of preservatives and alternatives,” European Journal of Pharmaceutics and Biopharmaceutics, 53(3):263-280 (2002).
Geroski, D. H. et al., “Drug delivery for posterior segment eye disease,” Invest. Ophthalmol. Vis. Sci., 41(5):961-964 (2000).
Gilger, B. C. et al., “Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles,” Investigative Ophthalmology & Visual Science, 54(4):2483-2492 (2013).
Gilger, et al., “A Novel Bioerodible Deep Scleral Lamellar Cyclosporine Implant for Uveitis,” Invest Ophthalmol Vis Sci, vol. 47, Issue 6, 2006, pp. 2596-2605.
Haller, J. A. et al., “Evaluation of the safety and performance of an applicator for a novel intravitreal dexamethasone drug delivery system for the treatment of macular edema,” Retina, 29(1):46-51 (2009).
Haller, J. A., “Intraocular Steroids in the Office. New formulations offer preservative-free triamcinolone without relying on compounding pharmacies,” Retinal Physician [online]. Retrieved from the Internet: URL: https://www.retinalphysician.com/supplements/2009/february-2009/special-edition/intraocular-steroids-in-the-office, Feb. 1, 2009, 4 pages.
Hanekamp, S. et al., “Inhibition of Corneal and Retinal Angiogenesis by Organic Integrin Antagonists After Intrascleral or Intravitreal Drug Delivery,” Invest Ophthalmol Vis. Sci., 43: E-Abstract 3710, ARVO (2002), 2 pages.
Heller, J., Ocular delivery using poly(ortho esters), Adv. Drug. Deliv. Rev., 57(14):2053-2062 (2005).
Hogan et al., Chapter Eight, Choroid, In Histology of the Human Eye, 9 pages (1971).
HomeCEU, “How Does Iontophoresis Work?”, [Online], Retrieved from the Internet: https://www.homeceuconnection.com/blog/how-does-iontophoresis-work/, 2018, 5 pages.
International Search Report and Written Opinion for International Application No. PCT/US2007/004874, mailed Jun. 4, 2008, 6 pages.
International Search Report and Written Opinion for International Application No. PCT/US2007/068055, mailed Nov. 7, 2007, 13 pages.
International Search Report and Written Opinion for International Application No. PCT/US2011/033987, mailed Feb. 14, 2012, 7 pages.
International Search Report and Written Opinion for International Application No. PCT/US2011/056433, mailed Apr. 25, 2012, 17 pages.
International Search Report and Written Opinion for International Application No. PCT/US2013/056863, mailed Nov. 26, 2013, 8 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/036590, mailed Dec. 10, 2014, 10 pages.
International Search Report and Written Opinion for International Application No. PCT/US2014/040254, mailed Oct. 31, 2014, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/036299, mailed Nov. 10, 2015, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2015/036715, mailed Jan. 19, 2016, 9 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/017014, mailed Apr. 27, 2017, 13 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/030439, mailed Aug. 1, 2017, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/030609, mailed Oct. 6, 2017, 12 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/046553, mailed Dec. 13, 2017, 14 pages.
International Search Report and Written Opinion for International Application No. PCT/US2017/065796, mailed Apr. 12, 2018, mailed Apr. 12, 2018, 9 pages.
Invitation pursuant to Article 94(3) and Rule 71(1) for European Application No. 07751620.1, mailed Feb. 29, 2016, 3 pages.
Jain, A., “Pseudo loss of resistance in epidural space localization: A complication of subcutaneous emphysema or simply a faulty technique,” Saudi J. Anaseth, 5(1): 108-109 (2011) (Abstract).
Jiang, et al., “Intrascleral Drug Delivery to the Eye Using Hollow Microneedles”, Pharmaceutical Research, vol. 26, Issue 2, 2009, pp. 395-403.
Jiang, J. et al., “Coated Microneedles for Drug Delivery to the Eye,” Investigative Ophthalmology & Visual Science, 48(9):4038-4043 (2007).
Jiang, J. et al., “Measurement and Prediction of Lateral Diffusion within Human Sclera,” Investigative Ophthalmology & Visual Science, 47(7):3011-3016 (2006).
Kadam, R. S. et al., “Suprachoroidal delivery in a rabbit ex vivo eye model: influence of drug properties, regional differences in delivery, and comparison with intravitreal and intracameral routes,” Molecular Vision, 19:1198-1210 (May 2013).
Karim, R. et al., “Interventions for the treatment of uveitic macular edema: a systematic review and meta-analysis,” Clinical Ophthalmology, 7:1109-1144 (2013).
Lee et al., “Thixotropic property in pharmaceutical formulations,” Journal of Controlled Release (2009) 136:88-98.
Lee, S-B et al., “Drug delivery through the sclera: effects of thickness, hydration and sustained release systems,” Experimental Eye Research, 78:599-607 (2004).
Lindfield, D. et al., “Suprachoroidal Devices in Glaucoma. The Past, Present, and Future of Surgery for Suprachoroidal Drainage,” Cataract & Refractive Surgery Today Europe, [online], Oct. 2013, Retrieved from the Internet: URL: http://bmctoday.net/crstodayeurope/2013/10/article.asp?f=suprachoroidal-devices-in-glaucoma. Retrieved from the Internet on: Oct. 24, 2014, Bryn Mawr Communications LLC, Wayne, PA, USA, 3 pages.
Loewen, N., “The suprachoroidal space in glaucoma surgery,” Jul. 2012, 4 pages.
Maurice, D., “Review: Practical Issues in Intravitreal Drug Delivery,” J. Ocul. Pharmacol. Ther., 17(4):393-401 (2001).
Mcallister, et al., “Microfabricaled needles for transdermal delivery of macromolecules and nanoparticles: rabrication methods and transport studies”, Proceedings of the Natural Academy of Science, vol. 100, Issue 24, 2003, pp. 13755-13760.
Norman, D., Epidural analgesia using loss of resistance with air versus saline: Does it make a difference? Should we reevaluate our practice?, AANA Journal, 71(6):449-453 (Dec. 2003).
Notice of Reasons for Rejection for Japanese 2018-557826, mailed Mar. 29, 2021, 13 pages.
Notice of Reasons for Rejection for Japanese Application No. 2016-512068, mailed Mar. 26, 2018, 4 pages.
Notice of Reasons for Rejection for Japanese Application No. 2016-574090, mailed Mar. 4, 2019, 18 pages.
Notice of Reasons for Rejection for Japanese Application No. 2018-142345, mailed Jun. 6, 2019, 6 pages.
Office Action for Brazilian Application No. 112012027416-3, mailed Nov. 14, 2021, 4 pages.
Office Action for Brazilian Application No. 112013009205-0, dated Sep. 17, 2019, 4 pages.
Office Action for Brazilian Application No. PI 0708133-2, dated Feb. 26, 2019, 11 pages.
Office Action for Canadian Application No. 162010, dated Aug. 25, 2015, 1 page.
Office Action for Canadian Application No. 2797258, dated Nov. 21, 2016, 3 pages.
Office Action for Canadian Application No. 2,882,184, dated Aug. 18, 2020, 3 pages.
Office Action for Canadian Application No. 2,882,184, dated Jan. 24, 2020, 6 pages.
Office Action for Canadian Application No. 2,882,184, dated May 1, 2019, 3 pages.
Office Action for Canadian Application No. 2,911,290, dated Jun. 18, 2020, 5 pages.
Office Action for Chinese Application No. 201510144330.2, issued Apr. 5, 2016, 17 pages.
Office Action for Eurasian Application No. 201592109, mailed Apr. 1, 2016, 4 pages.
Office Action for Eurasian Application No. 201592109, mailed Jan. 31, 2018, 2 pages.
Office Action for European Application No. 07751620.1, dated Dec. 11, 2014, 5 pages.
Office Action for European Application No. 07751620.1, dated Sep. 13, 2013, 7 pages.
Office Action for European Application No. 11777924.9, mailed Oct. 1, 2019, 5 pages.
Office Action for European Application No. 13833318.2, dated Apr. 20, 2021, 4 pages.
Office Action for European Application No. 13833318.2, dated Aug. 26, 2020, 5 pages.
Office Action for European Application No. 13853777.4, mailed Apr. 10, 2018, 8 pages.
Office Action for European Application No. 14791646.4, dated Dec. 4, 2017, 5 pages.
Office Action for European Application No. 14791646.4, dated Feb. 11, 2020, 5 pages.
Office Action for European Application No. 14791646.4, dated Sep. 17, 2018, 5 pages.
Office Action for European Application No. 14808034.4, mailed Nov. 8, 2017, 4 pages.
Office Action for European Application No. 17755007.6, mailed Jun. 25, 2021, 6 pages.
Office Action for European Application No. 18176172.7, mailed Feb. 7, 2020, 4 pages.
Office Action for European Application No. 18199418.7, mailed Nov. 10, 2020, 5 pages.
Office Action for Indian Application No. 10099/DELNP/2012, mailed Jul. 2, 2019, 5 pages.
Office Action for Israeli Application No. 242395, dated Aug. 10, 2020, 12 pages.
Office Action for Israeli Application No. 242395, dated May 7, 2019, 7 pages.
Office Action for Japanese Application No. 2008-556462, dated Jul. 24, 2012, 15 pages.
Office Action for Japanese Application No. 2013-534049, mailed Sep. 1, 2015, 11 pages.
Office Action for Japanese Application No. 2016-068174, mailed Mar. 1, 2017, 8 pages.
Office Action for Korean Application No. 10-2015-7034411, dated Nov. 16, 2020, 8 pages.
Office Action for Mexican Application No. MX/a/2015/015282, dated May 15, 2019, 8 pages.
Office Action for Mexican Application No. MX/a/2015/015282, dated Oct. 26, 2018, 4 pages.
Office Action for New Zealand Application No. 714172, dated Dec. 12, 2018, 3 pages.
Office Action for New Zealand Application No. 714172, dated Feb. 1, 2018, 4 pages.
Office Action for New Zealand Application No. 714172, dated Jul. 24, 2018, 4 pages.
Office Action for Russian Application No. 2012147341, dated Feb. 26, 2015, 8 pages.
Office Action for Russian Application No. 2017101660, dated Mar. 5, 2019, 7 pages.
Office Action for Singapore Application No. 200805936-2, dated Oct. 15, 2012, 7 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Apr. 12, 2016, 25 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Dec. 14, 2018, 17 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Dec. 27, 2016, 28 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Feb. 11, 2015, 14 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Jan. 16, 2018, 32 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Jun. 24, 2014, 11 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Mar. 23, 2011, 9 pages.
Office Action for U.S. Appl. No. 11/709,941, mailed Oct. 27, 2011, 8 pages.
Office Action for U.S. Appl. No. 11/743,535, mailed Aug. 19, 2010, 7 pages.
Office Action for U.S. Appl. No. 11/743,535, mailed Dec. 29, 2009, 6 pages.
Office Action for U.S. Appl. No. 12/767,768, mailed Jun. 10, 2011, 5 pages.
Office Action for U.S. Appl. No. 13/273,775, mailed Feb. 12, 2015, 13 pages.
Office Action for U.S. Appl. No. 13/273,775, mailed Jul. 3, 2014, 12 pages.
Office Action for U.S. Appl. No. 13/447,246, mailed Oct. 28, 2013, 5 pages.
Office Action for U.S. Appl. No. 13/453,407, mailed Mar. 20, 2013, 5 pages.
Office Action for U.S. Appl. No. 13/842,218, mailed Jul. 5, 2016, 11 pages.
Office Action for U.S. Appl. No. 13/842,288, mailed Oct. 6, 2015, 10 pages.
Office Action for U.S. Appl. No. 14/136,657, mailed Dec. 16, 2016, 7 pages.
Office Action for U.S. Appl. No. 14/268,687, mailed May 19, 2016, 6 pages.
Office Action for U.S. Appl. No. 14/424,685, mailed Dec. 12, 2016, 15 pages.
Office Action for U.S. Appl. No. 14/424,685, mailed Jun. 10, 2016, 10 pages.
Office Action for U.S. Appl. No. 14/441,151, mailed Sep. 9, 2016, 18 pages.
Office Action for U.S. Appl. No. 14/523,243, mailed Feb. 27, 2015, 14 pages.
Office Action for U.S. Appl. No. 14/821,310, mailed Jul. 14, 2017, 11 pages.
Office Action for U.S. Appl. No. 14/894,161, mailed Apr. 6, 2018, 19 pages.
Office Action for U.S. Appl. No. 14/894,161, mailed Dec. 27, 2016, 17 pages.
Office Action for U.S. Appl. No. 14/894,161, mailed Sep. 20, 2017, 21 pages.
Office Action for U.S. Appl. No. 15/001,610, mailed Sep. 8, 2016, 12 pages.
Office Action for U.S. Appl. No. 15/086,485, mailed Jul. 28, 2016, 9 pages.
Office Action for U.S. Appl. No. 15/319,045, mailed Jul. 13, 2018, 13 pages.
Office Action for U.S. Appl. No. 15/383,582, mailed May 5, 2017, 10 pages.
Office Action for U.S. Appl. No. 15/398,538, mailed Apr. 16, 2019, 8 pages.
Office Action for U.S. Appl. No. 15/398,538, mailed Jul. 20, 2018, 12 pages.
Office Action for U.S. Appl. No. 15/427,823, mailed Apr. 20, 2017, 8 pages.
Office Action for U.S. Appl. No. 15/427,823, mailed Jul. 20, 2018, 11 pages.
Office Action for U.S. Appl. No. 15/427,823, mailed Sep. 27, 2017, 7 pages.
Office Action for U.S. Appl. No. 15/619,065, mailed Jan. 28, 2020, 24 pages.
Office Action for U.S. Appl. No. 15/619,065, mailed Jun. 11, 2021, 18 pages.
Office Action for U.S. Appl. No. 15/619,065, mailed Jun. 13, 2019, 30 pages.
Office Action for U.S. Appl. No. 15/619,065, mailed Nov. 27, 2020, 23 pages.
Office Action for U.S. Appl. No. 15/675,035, mailed Jun. 11, 2020, 14 pages.
Office Action for U.S. Appl. No. 15/708,779, mailed Jul. 15, 2019, 8 pages.
Office Action for U.S. Appl. No. 15/872,206, mailed May 1, 2020, 8 pages.
Office Action for U.S. Appl. No. 15/872,206, mailed Oct. 19, 2020, 9 pages.
Office Action for U.S. Appl. No. 15/946,838, mailed Jun. 27, 2019, 7 pages.
Office Action for U.S. Appl. No. 16/178,162, mailed Jun. 10, 2020, 18 pages.
Office Action for U.S. Appl. No. 16/178,162, mailed May 11, 2021, 48 pages.
Office Action for U.S. Appl. No. 16/381,213, mailed May 31, 2019, 7 pages.
Office Action for U.S. Appl. No. 16/591,067, mailed Nov. 18, 2019, 7 pages.
Office Action for U.S. Appl. No. 16/826,443, mailed Jun. 1, 2020, 6 pages.
Office Action for U.S. Appl. No. 17/217,455, mailed Jun. 23, 2021, 13 pages.
Office Action for U.S. Appl. No. 17/217,455, mailed Oct. 21, 2021, 15 pages.
Olsen, T., “Drug Delivery to the Suprachoroidal Space Shows Promise,” Retina Today, pp. 36-39 (Mar./Apr. 2007).
Olsen, T. W. et al., “Cannulation of the Suprachoroidal Space: A Novel Drug Delivery Methodology to the Posterior Segment,” American J. Opthamology, 142(5):777-787 (2006).
Ozkiris, A., “Intravitreal Triamcinolone Acetonide Injection for the Treatment of Posterior Uveitis,” Ocular Immunology and Inflammation, vol. 14, Issue 4, pp. 233-238 (May 2006), Published online: Jul. 8, 2009 (Abstract).
Partial European Search Report for European Application No. 18176172.7, mailed Oct. 30, 2018, 13 pages.
Partial Supplementary European Search Report for European Application No. 15810459.6, mailed Dec. 22, 2017, 13 pages.
Patel, S. et al., “Drug Binding to Sclera,” Invest Ophthalmol Vis Sci., 50:E-Abstract 5968 (2009), 2 pages.
Patel, S. et al., “Suprachoroidal Drug Delivery Using Microneedles,” Invest. Ophthalmol. Vis. Sci., 49:E-Abstract 5006 (2008), 2 pages.
Patel, S. R. et al., “Intraocular Pharmacokinetics of Suprachoroidal Drug Delivery Administered Using Hollow Microneedles,” Invest Ophthalmol Vis Sci., 51:E-Abstract 3796 (2010), 2 pages.
Patel, S. R. et al., “Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye,” Investigative Ophthalmology & Visual Science, 53(8):4433-4441 (Jul. 2012).
Penkov, M. A. et al., “A ten-year experience with usage of the method of supra-choroidal administration of medicinal substances,” Oftalmol. Zh., 35(5):281-285 (1980) (Translated from Russian).
Prausnitz, M. R. et al., “Measurement and prediction of transient transport across sclera for drug delivery to the eye,” Industrial and Engineering Chemistry Research, 37(8):2903-2907 (1998).
Prausnitz, M. R., “Microneedles for Ocular Drug Delivery,” Review of Olsen, T., Drug Delivery to the Suprachoroidal Space Shows Promise, Retina Today, Mar./Apr. 2007, p. 39.
Prausnitz, “Microneedles for transdermal drug delivery”, Advanced Drug Delivery Reviews, vol. 56, 2004, pp. 581-587.
Preliminary Office Action for Brazilian Application No. 112012027416-3, mailed Jul. 11, 2021, 2 pages.
Preliminary Office Action for Brazilian Application No. 112015027762-4, dated Jan. 17, 2020, 6 pages.
Preliminary Rejection for Korean Application No. 10-2021-7023167, dated Aug. 17, 2021, 7 pages.
Rowe-Rendleman, C. L. et al., “Prophylactic Intra-Scleral Injection of Steroid Compounds in Rabbit Model of Retinal Neovascularization,” Invest Ophthalmol Vis. Sci., 43:E-Abstract 3872, ARVO (2002), 2 pages.
Saberski, L. R. et al., “Identification of the epidural space: Is loss of resistance to air a safe technique? A review of the complications related to the use of air,” Regional Anesthesia, 22(1):3-15 (1997).
Sallam, A. et al., “Repeat intravitreal triamcinolone acetonide injections in uveitic macular oedema,” Acta Ophthalmologica, 90(4):e323-e325 (2012).
Scott, I. U. et al., “Baseline characteristics and response to treatment of participants with hemiretinal compared with branch retinal or central retinal vein occlusion in the standard care vs. corticosteroid for retinal vein occlusion (SCORE),” Arch. Ophthalmol., 130(12):1517-1524 (Dec. 2012).
Search Report and Written Opinion for Singapore Application No. 11201503637S, mailed Jun. 23, 2016, 9 pages.
Search Report and Written Opinion for Singapore Application No. 11201509051V, dated Nov. 2, 2016, 6 pages.
Search Report and Written Opinion for Singapore Application No. 200805936-2, dated Jun. 8, 2010, 13 pages.
Second Office Action for Chinese Application No. 200780014501.3, dated Aug. 26, 2010, 10 pages.
Second Office Action for Chinese Application No. 201110093644.6, dated Sep. 7, 2012, 8 pages.
Second Office Action for Chinese Application No. 201180060268.9, issued Jun. 18, 2015, 4 pages.
Second Office Action for Chinese Application No. 201510144330.2, issued Dec. 20, 2016, 13 pages.
Second Office Action for Chinese Application No. 201910430078.X, issued Aug. 18, 2021, 5 pages.
Shuler, R. K. et al., “Scleral Permeability of a Small, Single-Stranded Oligonucleotide,” Journal of Ocular Pharmacology and Therapeutics, 20(2): 159-168 (2004) (Abstract).
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC for European Application No. 07751620.1, mailed Jun. 13, 2017, 8 pages.
Supplementary European Search Report for European Application No. 14808034.4, mailed Jan. 23, 2017, 7 pages.
Supplementary Partial European Search Report for European Application No. 13853777.4, mailed Jul. 4, 2016, 6 pages.
Supplementary Search Report for Singapore Application No. 200805936-2, dated May 26, 2011, 8 pages.
Supplementary Search Report for Singapore Application No. 200805936-2, dated May 6, 2011, 8 pages.
Third Office Action for Chinese Application No. 201110093644.6, dated Dec. 14, 2012, 3 pages.
Third Office Action for Chinese Application No. 201180060268.9, issued Feb. 5, 2016, 6 pages.
Third Office Action for Chinese Application No. 201510144330.2, issued Jun. 28, 2017, 3 pages.
Wang, P. M. et al., “Minimally Invasive Extraction of Dermal Interstitial Fluid for Glucose Monitoring Using Microneedles,” Diabetes Technology & Therapeutics, 7(1):131-141 (2005).
You, X. D. et al., “Chitosan drug delivery system implanting into suprachoroidal space for perforating ocular injury in rabbits,” International Journal of Ophthalmology, 5(1):74-76 (2005) [English Abstract].
Al-Shaikh, B. et al., 2007, “Essentials of Anaesthetic Equipment,” Edinburgh: Churchill Livingstone, 3rd Edition, 7 pages.
Amaratunga, A. et al., “Inhibition of Kinesin Synthesis and Rapid Anterograde Axonal Transport in Vivo by an Antisense Oligonucleotide,” The Journal of Biological Chemistry, Aug. 1993, vol. 268, No. 23, pp. 17427-17430.
Bunnelle, E., “Syringe Diameters,” [online] 2005. Cchem.berkeley.edu. Available at: http://www.cchem.berkeley.edu/rsgrp/Syringediameters.pdf [Accessed Mar. 11, 2022], 3 pages.
Dogliotti, A. M., “Research and Clinical Observations on Spinal Anesthesia: With Special Reference to the Peridural Technique,” Current Researches in Anesthesia & Analgesia, Mar.-Apr. 1933, vol. 12, Issue 2, pp. 59-65.
Final Office Action for U.S. Appl. No. 17/711,495 dated Jan. 17, 2023, 36 pages.
Final Rejection Office Action for U.S. Appl. No. 16/178, 162 mailed on May 16, 2022, 55 pages.
Habib, A. S et al., “The AutoDetect Syringe Versus the Glass Syringe for the Loss of Resistance Technique in Parturients,” Duke University Medical Center, Durham, North Carolina, Oct. 2007, 2 pages.
Harvardapparatus.com. 2011. Syringe Selection Guide. [online] Available at: https://www.harvardapparatus.com/media/harvard/pdf/Syringe%20Selection%20Guide.pdf , [Accessed Mar. 11, 2022], 4 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2021/054395 dated Apr. 20, 2023, 11 pages.
International Search Report and Written Opinion for International Application No. PCT/US2021/054395, mailed Mar. 14, 2022, 16 pages.
Invitation to Pay Additional Fees for International Application No. PCT/US2021/054395, mailed Dec. 8, 2021, 4 pages.
Kim, S. H. et al., “Assessment of Subconjunctival and Intrascleral Drug Delivery to the Posterior Segment Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging,” Invest Ophthalmol Vis Sci, vol. 48, No. 2, Feb. 2007, pp. 808-814.
Mansoor, S. et al., “Pharmacokinetics and Biodistribution of Triamcinolone Acetonide Following Suprachoroidal Injection into the Rabbit Eye In Vivo Using a Microneedle,” Investigative Ophthalmology & Visual Science, ARVO Annual Meeting Abstract, Apr. 2011, vol. 52, 6585, 2 pages.
Non-Final Office Action for U.S. Appl. No. 17/711,495 mailed on Sep. 7, 2022, 26 pages.
Non-Final Office Action for U.S. Appl. No. 17/711,495, filed Aug. 2, 2022, 15 pages.
Notice of Opposition for European Application No. 14791646.4, dated Mar. 29, 2022, 38 pages.
Office Action for Brazilian Application No. 112015027762-4, dated Jan. 28, 2022, 19 pages.
Office Action for Brazillian Application No. BR1120150277624 dated Mar. 22, 2023, 3 pages.
Office Action for Chinese application No. CN201910430078, mailed on Jul. 7, 2022, 7 pages.
Office Action for European Application No. 17880800.2, mailed Apr. 14, 2022, 10 pages.
Office Action for European Application No. 18199418.7, mailed May 18, 2022, 5 pages.
Office Action for European Application No. EP20180199418 dated Apr. 13, 2023, 4 pages.
Office Action for Israel application No. 1286808, mailed on Oct. 20, 2022, 7 pages.
Office Action for Israeli Application No. 264764, dated Feb. 28, 2022, 7 pages.
Patel, S. R. et al., “Suprachoroidal drug delivery to the back of the eye using hollow microneedles,” Pharmaceutical Research, Sep. 21, 2010, Vo. 28, No. 1, pp. 166-176.
Patel, S. R., “Suprachoroidal drug delivery to the eye using hollow microneedles,” Dissertation, Georgia Institute of Technology, May 2011, 177 pages.
Stein, L. et al., “Clinical gene therapy for the treatment of RPE65-associated Leber congenital amaurosis,” Expert Opin. Biol. Ther., Mar. 2011, vol. 11, No. 3, pp. 429-439.
Syringepump.com. 2012. NE-300 Just Infusion ™ Syringe Pump. [online] Available at: https://www.syringepump.com/download/NE-300Brochure.pdf [Accessed Mar. 11, 2022], 5 pages.
Third Office Action for Chinese Application No. 201910430078.X, issued Mar. 29, 2022, 12 pages.
Final Office Action for U.S. Appl. No. 17/062,096, mailed Oct. 25, 2023, 9 pages.
International Search Report and Written Opinion for Intl. Application No. PCT/US2023/066324, mailed Aug. 7, 2023, 11 pages.
Non-Final Office Action for U.S. Appl. No. 16/440,108, mailed Dec. 4, 2023, 14 pages.
Non-Final Office Action for U.S. Appl. No. 17/208,235 mailed Aug. 21, 2023, 20 pages.
Non-Final Office Action for U.S. Appl. No. 18/365,024, mailed Oct. 12, 2023, 10 pages.
Office Action for Canadian Application No. CA20173062845, mailed Jul. 21, 2023, 4 pages.
Office Action for Canadian Application No. CA20173072847, mailed Sep. 29, 2023, 4 pages.
Office Action for Mexican Application No. MX20180013502, mailed Aug. 4, 2023, 3 pages.
Office Action for European Application No. EP18199418.7, mailed May 29, 2024, 5 pages.
Related Publications (1)
Number Date Country
20220062041 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
61393741 Oct 2010 US
Continuations (4)
Number Date Country
Parent 17208235 Mar 2021 US
Child 17523168 US
Parent 15872206 Jan 2018 US
Child 17208235 US
Parent 14821310 Aug 2015 US
Child 15872206 US
Parent 13273775 Oct 2011 US
Child 14821310 US