There are several time-consuming steps in reloading cases reclaimed from spent ammunition cartridges. The first step is to gather reloadable cases. If the reloader chooses to clean said cases, they are usually processed in wet or dry tumbling media, then separated from the media. There are several existing inventions for media separation; those inventions do not always remove all the media completely. A common method for separating wet media (common wet media is stainless steel pins tumbled with the cases) is to place the cases and media in a colander, and manually mix the cases while rinsing until most of the media falls through the colander holes, leaving the cases in the colander. Still some media often remains in the cases and the reloader must check them individually to ensure there are no pins remaining in the cases.
After the wet cases have been removed from the colander, they must be dried. If the reloader has time, the cases are commonly set on towels to dry overnight or longer. If time is short, the reloader will place the cases on a cookie sheet in an oven to accelerate the drying process; the cases dry faster if they have space between them for air to flow. Another method is to spread out the cases on a food dehydrator tray and use the dehydrator's warm airflow to dry the cases.
The next step is to lube the outside of the cases in preparation for insertion into a resizing die within a reloading machine. If spray lube is used, a common technique is to manually and individually stand the cases upright and spray the sides of the cases from opposing directions to ensure good coverage. There are several existing inventions which provide pockets for cases to be spaced in an orderly fashion standing upright, but these inventions do not provide a means by which the cases may be automatically organized—the cases must still be manually placed in the pockets. At a time of the reloader's choosing within the entire process, the cases are also inspected for abnormalities. This is often done during the cleaning, drying, or lubing process, concurrently with those manual processes.
Some reloaders prefer to charge cases with gunpowder while they are standing upright, as opposed to being charged as part of a reloading machine process. Reloaders will often purchase an existing invention called a loading block, or build their own loading block, for this purpose of filling the cases as part of an organized, systematic process. A loading block is an array of equally spaced bores which requires the reloader to manually stand the cases upright individually in each bore. For the forgoing reasons, there is a need to have an invention which saves time and effort throughout the reloading process by automatically organizing, orienting and placing cases.
This invention was designed to streamline the reloader's workflow by providing a device which can replace the manual processes of organizing, orienting and placing cases commonly practiced in multiple steps within the reloading process. One object of this invention is to be used as a media separator. If using wet media to clean cases (a common wet media is stainless steel pins tumbled with cases), the pre-separated mixture including cases, pins and liquid may be poured over the module assemblies, whereby, through back-and-forth horizontal agitation, the pins will fall through the module assembly and any pins remaining in the cases can be shaken out when the module assembly is turned upside down with cases captured. Also the module assembly with cases captured may be rinsed together as a unit. The tray is designed to retain the pins above the screen layer at the bottom of the tray, while letting liquid through. The pins may be collected for re-use or may be left within the tray to dry, then collected and stored for re-use.
Another object of the invention is to aid in the drying process after cases have been cleaned if using a wet media or washing process. Placing wet cases in a uniform array allows for timely and more uniform drying. Cases in placed arrays, module assemblies with captured cases and/or trays with inserted module assemblies with captured cases may be loaded into a drying apparatus such as a food dehydrator or fan box. This allows the reloading process to accelerate when there is not enough time to wait for cases to air-dry.
Another object of the invention is to aid in visual inspection. Cases may be visually inspected more easily as a group while they are captured in the module assembly or released in an array on an inspection surface or turntable. Each end of the case—neck and base—may be inspected while captured in the module assembly. Cases may be released from the module assembly base-up or neck-up, depending on how the assembly is oriented when they are released.
Another object of the invention is to aid in lubrication. Cases may be released from the assembly in a neat array on the reloading bench or turntable, assisting the reloader with even coverage when spraying lube on the outside of cases.
Another object of the invention is to save time through better organization. Neat arrays with equal space between cases allows the reloader to process the cases more smoothly and in a timely manner, by being able to grasp the cases easily. It is common for reloaders to draw from a pile or bucket, which requires having to check cases for orientation before placing in a reloading machine. This invention places cases all in the same orientation. Also having blocks of cases in specific groups (such as a suggested array of 25 comprised of 5 columns and 5 rows as released from the assembly) gives the reloader a structured way of quickly calculating total number of casings, as 25 is a common module and is a common denominator in manufactured and reloaded box counts, as well as reloading components such as bullets and primers.
Additional advantages and features will become apparent when considering the included specification and drawings.
Reference the accompanying drawings for illustrations of the following:
Referring to the drawings there is shown generally, as indicated by reference numeral 16, a module with a plurality of funnels 21 in the top face, with the top of the funnels 21 having a square shape and the bottom of the funnels 21 having a round shape with size proportionate to the caliber of case 23 being organized. The form of the funnel 21 transitions smoothly from the square shape at top to the round shape at bottom.
Below each funnel 21 is a bore 22 which extends through the module 16 vertically. The vertical height of the bottom of the module 16 to the top of the funnel 21 is approximately equal to the height of the type of case 23 being organized. Because the top of the case 23 is substantially aligned with the top of the module 16, this allows excess cases to be swept off the top face of the module when the cases 23 have occupied the bores 22. Height of the module 16 will vary depending on what size of case 23 is being organized. Also height may adjusted in an alternative embodiment to where the bore 22 height is minimized so that more of the case 23 is exposed for better visual inspection of cases 23, but not less than what is needed to provide proper capture function of the module assembly 15. This “inspection embodiment” as described will not function as well for sweeping extra cases 23 from the top face of the module 16. Center-to-center distance of bores 22 also will depend on size of case 23 being organized. In the case of the embodiment shown in the drawings, the case 23 type is .45 caliber ACP and the center-to-center distance between bores 22 is 0.75 inches. Bore 22 diameter corresponding to the .45 ACP case is 0.53 inches. Other popular cartridge cases 23 for which corresponding modules 16 and plates 17 may be made include, but are not limited to, 9 mm, 10 mm, .40 S&W, .32 ACP, .38 Super, .357 Sig, and .380 ACP. Variation in plate 17 design would also accommodate revolver ammunition cases 23, which may include, but are not limited to, .44 Magnum, .44 Special, .357 Magnum and .38 Special. Total length and width of module 16 is dependent on case 23 type, array number (which is variable), and edge distance required for proper engagement of plate 17 in module slot 27 and function of button 26 on end of plate 17. Total dimension for the top face of the module 16 embodiment as shown for .45 caliber is 3.94 inches wide and 4.09 inches long, with length dimension being that which is aligned with the movement of the plate 17.
Referencing
A spring 18 provides pressure to hold the plate 17 in the capture position when at rest. The spring 18 is installed between a spring pocket 31 on the inside face of the button 26 and a corresponding spring pocket 31 on the outside face of the module. Stops at the end of the module slots 27 prevent the plate 17 from moving beyond the capture position. When cases 23 are engaged by the plate 17, force between cases 23 and plate 17 hold the plate 17 clear of the stops. Material of plate 17 is necessary to be somewhat flexible in the embodiment shown in order to slide the plate 17 into the slots 27 from the opposite end of the stops, because the button 26 extends above the height of the plate 17. If it is desired to fabricate the plate 17 from rigid material, the button 26 may be attached to the plate 17 after insertion of plate 17 in slot 27. Embodiment of the module 16, plate 17, tray 19, wedges 20, and overflow funnel 33 are preferably formed of a suitable synthetic plastics material such as ABS, PETG or polycarbonate.
A tab 30 is shown in
Sides of the tray 19 are fitted with wedges 20 which slide perpendicular to the direction of the plate 17 movement. The wedges 20 are at such elevation that they may engage the button 26 on the plate 17. The wedges 20, when not engaged, are positioned back-to-back and most of the wedge 20 is outside of the tray 19 interior perimeter. When engaged, the wedges 20 are slid away from each other thereby extending them into the wedge pockets in the tray 19 interior so that the inclined plane of the wedge 20 forces the button 26 in a perpendicular direction, causing the attached plate 17 to move from the capture position to the release (open) position. After cases 23 occupy the bores 22 in the module assemblies 15, the wedges 20 may be withdrawn by moving them toward each other, at which point the module assemblies 15 will convert from the release (open) position to the capture position.
Typical workflow function of the complete primary embodiment is as follows. Wedges 20 are oriented in the back-to-back position in the tray 19. Four module assemblies 15 are inserted into the tray 19, with buttons 26 oriented within the wedge 20 pockets on each side. Wedges 20 are extended into the pockets thereby engaging the buttons 26 and converting the module assemblies 15 to release (open) position. A number of cases 23 are poured over the top of the module assemblies 15. The user gently shakes the tray 19 back and forth in a random pattern as necessary to cause the cases 23 to fall into the funnels 21 and thus occupy the bores 22. At this point any extra cases 23 are swept off the overflow lip 29 end, through the overflow funnel 33 if desired. Although it is rare, if by chance any cases 23 have not oriented correctly in the bores 22, they are picked out by hand and re-oriented. Wedges 20 are then pushed toward each other; this causes the module assemblies 15 to convert to capture position thus engaging the extractor groove of the cases 23 with the engaging tabs 32 in the plate 17 thereby holding the cases 23. The module assemblies 15 may now be picked up out of the tray 19 by the tab 15 and moved to a horizontal surface, where the user depresses and holds button 26 thereby converting the module assembly 15 to release (open) position, at which time the module assembly 15 may be lifted off the released cases 23. The released cases 23 are now ready to be coated with spray lube, inspected, and processed in any number of ways. After the cases 23 have been released, if the user wishes to transport them again as a group, the button 26 may be depressed and held and the module assembly 15 lowered over the cases 23 whereby the button 26 may be released again, capturing the cases 23 for transport.