The invention relates to a device for osteosynthesis, and more particularly, to a fixation device, such as a bone plate, having a polyaxial bushing and screw assembly for securing such a device to bone.
Assemblies of the present type serve for screwing together elements such as pedicle screws or pedicle hooks in a polyaxial, rigid manner, and are used in particular in the area of the spinal column. However, these assemblies may also be employed for plating in general. Additional fields of application include use in combination with external fixators and intervertebral implants.
A device of this type is shown in U.S. Pat. No. 6,235,033, in which a screw head and the bore of the bone plate are held together by an angularly adjustable, annular bushing which is compressible and expansible by means of a slot so as to achieve an improved fastening of the screw in the plate. This known device, however, suffers from the disadvantage that the bushing used is of circular shape so that it may rotate together with the screw as the screw is screwed in, thus preventing it from becoming locked within the plate. The bushing may even turn around completely within the plate hole, so that the wrong side thereof faces upward (the inner cone tapering in the wrong direction). The present invention is intended to provide a remedy for this undesirable movement of the bushing relative to the bone plate.
It is accordingly an object of the present invention to provide a device for osteosynthesis in which the bone screws are polyaxially movable and lockable in an angularly stable manner relative to the bone plate without the need for any additional mechanical elements.
It should be emphasized that the discussion of the state of the art as set out above is merely intended to illustrate the background of the invention and does not mean that at the moment of filing the present application, or its priority application, the cited state of the art was actually published or otherwise publicly known.
According to the invention, this object is achieved by means of a device for osteosynthesis comprising a fixation element having a through hole designed to receive a multiaxially pivotal bushing for a bone screw, the through hole having a central axis and a non-circular cross-section extending orthogonally to the central axis; and a bushing insertable in said through hole, the bushing including a central bore designed to receive a bone screw, the bore having a longitudinal axis, and a peripheral outside surface configured and dimensioned to be in contact with at least a portion of the interior surface of the through hole. The bushing is configured and dimensioned to be radially compressible and radially expansible, and a cross section of the bushing extending orthogonally to the longitudinal axis of the bushing is shaped substantially the same as the cross section of the through hole such that when the bushing is inserted in the through hole, it is secured against rotation relative to its longitudinal axis while remaining pivotally adjustable relative to the fixation element.
As used herein, the term “non-circular” refers to any cross section deviating from an exactly circular shape, and refers in particular, but is not limited to, prismatic and elliptical cross sections.
One advantage achieved by the device of the present invention consists in the fact that the bushing can no longer turn about its own axis while the bone screw is screwed in. The turning of said bushing would in fact entail that no relative movement between the bushing and the screw would take place, and that the bushing would, therefore, not be expanded. Consequently, a locking of the screw would not be possible. A further advantage consists in the fact that, unlike the device disclosed in U.S. Pat. No. 6,235,033, an additional locking screw is unnecessary.
In one particular embodiment, the cross section of the through hole formed in the osteosynthetic device, which, in a preferred embodiment includes a bone plate, is polygonal, preferably hexagonal, so that said through hole has the form of a prism, preferably a hexagonal prism. In the case of the hexagonal embodiment, the bone screw may be simultaneously moved in three planes within the hexagonal through hole, making it possible to adjust and fix the screw at any desired angle. Said angle is only limited by the plate thickness and by the abutment of the bushing on the reduced cross section. It is of course also possible to use bone plates having a plurality of through holes.
In a further embodiment, the diameter of the central bore of the bushing tapers in one direction and the bore is preferably shaped in the form of a cone. This configuration permits the bushing to be spread apart by means of a corresponding counter cone. However, the bore formed in the bushing may also be realised in a circular cylindrical shape.
Preferably, the bore of the bushing is provided with an internal screw thread. This permits a locking of the bushing.
Extending orthogonally to the central axis, the cross section of the through hole formed in the osteosynthetic device, which is preferably realised as a bone plate, may also be of elliptical shape.
In a specific embodiment, the cross section of the through hole consists of two incomplete semicircles connected to one another by means of non-circular lines. In this case, the bushing is provided with two protrusions formed on its outer surface which may be inserted into the grooves formed in the through hole by the non-circular lines.
In order to be radially compressible and radially expansible, the bushing may be provided with a continuous slot preferably extending parallel to the longitudinal axis of the bushing. In an alternative embodiment, the bushing may also have a plurality of non-continuous slots preferably extending parallel to the longitudinal axis.
The surface of the bushing, preferably in the area of its peripheral, outer surface, is suitably roughened, e.g. by means of grit blasting. The through hole formed in the bone plate may correspondingly be roughened, e.g. by means of grit blasting. However, the surface of the bushing, preferably in the area of its peripheral, outside face, may also be provided with a macrostructured portion, e.g. in the form of peripheral ridges. The through hole may then be correspondingly provided with a macrostructured portion, e.g. in the form of peripheral ridges. The advantage of this configuration lies in the positive engagement between the bushing and the bone plate which is thus achievable.
In another specific embodiment, the through hole formed in the osteosynthetic device, which, in a preferred embodiment includes a bone plate, tapers towards the bottom surface and preferably also towards the top surface, thus resulting in reduced cross sections which prevent the bushing from falling out or from being pressed out. Suitably, the reduced cross section of the through hole and the compressibility of the bushing are selected adequately so that it is still possible to introduce the compressed bushing into the through hole.
The form of the peripheral outside face of the bushing is suitably convex, and preferably cylindrical.
Preferably, the osteosynthetic device—at least in the area of its through hole—and the bushing—at least in the area of its peripheral outside face—consist of different materials, preferably of materials differing from each other in hardness. The bushing may, for example, consist of a biocompatible plastic material and the osteosynthetic device (e.g. a bone plate) of a biocompatible metal. However, the bushing may also be made of metal and the device of a plastic material, preferably a reinforced plastic material. The different materials cause a plastic deformation of the surfaces and thus lead to a positive engagement.
The height of the bushing measured in the direction of its longitudinal axis should be inferior to the height of the through hole formed in the bone plate as measured in the direction of its central axis. The height of the bushing may be between 40 and 85 percent of the height of the through hole. In one specific embodiment, the height of the bushing may be between 45 and 65 percent of the height of the through hole.
The bone screws to be introduced into the bushing preferably have a conical screw head which is provided with an external screw thread. The advantage of this configuration is that the spreading and the locking of the bushing may thus be realised in a single step.
In the following, the invention and improvements of the invention will be illustrated in greater detail with reference to the partially diagrammatic representations of several embodiments. All the embodiments relate to an osteosynthetic device including a bone plate. Analogous applications for pedicle screws, pedicle hooks, external fixators, or intervertebral implants are also possible and within the scope of the present invention.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
The device for osteosynthesis represented in
The bushing 10 has a continuous slot 13 so as to be radially compressible and radially expansible. The through hole 4 of the bone plate 1 is provided, toward the bottom surface 2 and toward the top surface 3 thereof, with a reduced cross section 9 so as to prevent the bushing 10 from falling out or from being pressed out. Suitably, the reduced cross-section 9 of the through hole 4 and the compressibility of the bushing 10 are selected adequately so that it is still possible to introduce the compressed bushing 10 into the through hole 4.
As shown in
As shown in
As shown in
The bushing 10 may receive the bone screw 20 represented in
In the following, the clinical utilization of the device for osteosynthesis will shortly be described.
The bushing 10 of the device comes preassembled in the bone plate 1 or in the jaw. It therefore does not need to be inserted by the surgeon. The bone plate with the preassembled bushings is applied to the bone. This may be done either before or after the reduction of the different bone fragments or vertebral bodies. There are three possible scenarios for placing the bone screws: a) drilling, tapping, screwing; b) drilling, screwing (using self-tapping screws); or c) screwing (using self-drilling and self-tapping screws).
It is also possible to use aiming devices or drill bushings. It is of course not suitable to use fixed aiming devices, as this would typically negate the advantage of an angularly adjustable screw, but such an aiming device may nonetheless make sense in cases in which a limitation of the range of adjustment is desirable. Drill bushings are needed in cases in which no self-drilling screws are used and a hole must be drilled prior to inserting the screw. In such cases the drill bushing serves to prevent soft-tissue injury.
There are basically two possible ways of placing a plurality of bone screws:
A) if bone reduction is done prior to the application of the plate, the screws may immediately be fastened; and
B) in cases in which bone reduction is done after the application of the plate, the screws are first turned in only so far as to fix the plate on the bone; after that, the final bone reduction or correction takes place and the screws are subsequently turned in a few more angular degrees so as to become locked within the plate.
While the present invention has been described with reference to the preferred embodiments, those skilled in the art will recognize that numerous variations and modifications may be made without departing from the scope of the present invention. Accordingly, it should be clearly understood that the embodiments of the invention described above are not intended as limitations on the scope of the invention, which is defined only by the following claims.
The present application is a continuation of co-pending U.S. application Ser. No. 10/877,096, filed Jun. 24, 2004, which is a continuation of the U.S. national stage application of International Patent Application No. PCT/CH01/00740, filed Dec. 24, 2001, the entire contents of both of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3596656 | Kaute | Aug 1971 | A |
3993397 | Gutshall | Nov 1976 | A |
4029091 | von Bezold et al. | Jun 1977 | A |
4097112 | Veldman et al. | Jun 1978 | A |
4388921 | Sutter et al. | Jun 1983 | A |
4493317 | Klaue | Jan 1985 | A |
5053036 | Perren et al. | Oct 1991 | A |
5057111 | Park | Oct 1991 | A |
5085660 | Lin | Feb 1992 | A |
5108399 | Eitenmuller et al. | Apr 1992 | A |
5269784 | Mast | Dec 1993 | A |
5304179 | Wagner | Apr 1994 | A |
5352226 | Lin | Oct 1994 | A |
5443467 | Biedermann et al. | Aug 1995 | A |
5470333 | Ray | Nov 1995 | A |
5474551 | Finn et al. | Dec 1995 | A |
5474553 | Baumgart | Dec 1995 | A |
5486174 | Fournet-Fayard et al. | Jan 1996 | A |
5501684 | Schlapfer et al. | Mar 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5531746 | Errico et al. | Jul 1996 | A |
5595512 | Langdon | Jan 1997 | A |
5607426 | Ralph et al. | Mar 1997 | A |
5607428 | Lin | Mar 1997 | A |
5613968 | Lin | Mar 1997 | A |
5628740 | Mullane | May 1997 | A |
5643265 | Errico et al. | Jul 1997 | A |
5669911 | Errico et al. | Sep 1997 | A |
5672176 | Biedermann et al. | Sep 1997 | A |
5681319 | Biedermann et al. | Oct 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5690630 | Errico et al. | Nov 1997 | A |
5725588 | Errico et al. | Mar 1998 | A |
5735853 | Olerud | Apr 1998 | A |
5797911 | Sherman et al. | Aug 1998 | A |
5797912 | Runciman et al. | Aug 1998 | A |
5800435 | Errico et al. | Sep 1998 | A |
5807396 | Raveh | Sep 1998 | A |
5817094 | Errico et al. | Oct 1998 | A |
5882350 | Ralph et al. | Mar 1999 | A |
5885286 | Sherman et al. | Mar 1999 | A |
5888204 | Ralph et al. | Mar 1999 | A |
5891145 | Morrison et al. | Apr 1999 | A |
5902303 | Eckhof et al. | May 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5954722 | Bono | Sep 1999 | A |
5964760 | Richelsoph | Oct 1999 | A |
5976141 | Haag et al. | Nov 1999 | A |
6010503 | Richelsoph et al. | Jan 2000 | A |
6017345 | Richelsoph | Jan 2000 | A |
6022350 | Ganem | Feb 2000 | A |
6030389 | Wagner et al. | Feb 2000 | A |
6063090 | Schlapfer | May 2000 | A |
6074391 | Metz-Stavenhagen et al. | Jun 2000 | A |
6086588 | Ameil et al. | Jul 2000 | A |
6113601 | Tatar | Sep 2000 | A |
6132432 | Richelsoph | Oct 2000 | A |
6146383 | Studer et al. | Nov 2000 | A |
6176861 | Bernstein et al. | Jan 2001 | B1 |
6187005 | Brace et al. | Feb 2001 | B1 |
6206882 | Cohen | Mar 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
6280442 | Barker et al. | Aug 2001 | B1 |
6315779 | Morrison et al. | Nov 2001 | B1 |
6331179 | Freid et al. | Dec 2001 | B1 |
6355038 | Pisharodi | Mar 2002 | B1 |
6355040 | Richelsoph et al. | Mar 2002 | B1 |
RE37665 | Ralph et al. | Apr 2002 | E |
6402756 | Ralph et al. | Jun 2002 | B1 |
6454769 | Wagner et al. | Sep 2002 | B2 |
6471705 | Biedermann et al. | Oct 2002 | B1 |
6485494 | Haider | Nov 2002 | B1 |
6524315 | Selvitelli et al. | Feb 2003 | B1 |
6565567 | Haider | May 2003 | B1 |
6575975 | Brace et al. | Jun 2003 | B2 |
6623485 | Doubler et al. | Sep 2003 | B2 |
6641586 | Varieur | Nov 2003 | B2 |
6660004 | Barker et al. | Dec 2003 | B2 |
6663632 | Frigg | Dec 2003 | B1 |
6669697 | Pisharodi | Dec 2003 | B1 |
6679883 | Hawkes et al. | Jan 2004 | B2 |
6689133 | Morrison et al. | Feb 2004 | B2 |
6689134 | Ralph et al. | Feb 2004 | B2 |
6716214 | Jackson | Apr 2004 | B1 |
6723100 | Biedermann et al. | Apr 2004 | B2 |
6730093 | Saint Martin | May 2004 | B2 |
6767351 | Orbay et al. | Jul 2004 | B2 |
20010014807 | Wagner et al. | Aug 2001 | A1 |
20010021851 | Eberlein et al. | Sep 2001 | A1 |
20010037112 | Brace et al. | Nov 2001 | A1 |
20020026193 | Barker et al. | Feb 2002 | A1 |
20020045898 | Freid et al. | Apr 2002 | A1 |
20020045899 | Errico et al. | Apr 2002 | A1 |
20020058939 | Wagner et al. | May 2002 | A1 |
20020143328 | Shluzas et al. | Oct 2002 | A1 |
20020151900 | Glascott | Oct 2002 | A1 |
20020156474 | Wack et al. | Oct 2002 | A1 |
20030023243 | Biedermann et al. | Jan 2003 | A1 |
20030045878 | Petit et al. | Mar 2003 | A1 |
20030073996 | Doubler et al. | Apr 2003 | A1 |
20030073997 | Doubler et al. | Apr 2003 | A1 |
20030078583 | Biedermann et al. | Apr 2003 | A1 |
20030083658 | Hawkes et al. | May 2003 | A1 |
20030093082 | Campbell et al. | May 2003 | A1 |
20030149431 | Varieur | Aug 2003 | A1 |
20030153912 | Graf | Aug 2003 | A1 |
20030153920 | Ralph et al. | Aug 2003 | A1 |
20030158552 | Jeon et al. | Aug 2003 | A1 |
20030163133 | Altarac et al. | Aug 2003 | A1 |
20030187440 | Richelsoph et al. | Oct 2003 | A1 |
20030187442 | Richelsoph et al. | Oct 2003 | A1 |
20030199876 | Brace et al. | Oct 2003 | A1 |
20030225409 | Freid et al. | Dec 2003 | A1 |
20040006342 | Altarac et al. | Jan 2004 | A1 |
20040015169 | Gause | Jan 2004 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040030339 | Wack et al. | Feb 2004 | A1 |
20040068319 | Cordaro | Apr 2004 | A1 |
20040087951 | Khalili | May 2004 | A1 |
20040092930 | Petit et al. | May 2004 | A1 |
20040092938 | Carli | May 2004 | A1 |
20040092939 | Freid et al. | May 2004 | A1 |
20040097933 | Lourdel et al. | May 2004 | A1 |
20040097934 | Farris et al. | May 2004 | A1 |
20040102781 | Jeon | May 2004 | A1 |
20040116929 | Barker et al. | Jun 2004 | A1 |
20040127897 | Freid et al. | Jul 2004 | A1 |
20040127899 | Konieczynski et al. | Jul 2004 | A1 |
20040127900 | Konieczynski et al. | Jul 2004 | A1 |
20040127904 | Konieczynski et al. | Jul 2004 | A1 |
20040127906 | Culbert et al. | Jul 2004 | A1 |
20040138660 | Serhan | Jul 2004 | A1 |
20040138662 | Landry et al. | Jul 2004 | A1 |
20040143265 | Landry et al. | Jul 2004 | A1 |
20040147928 | Landry et al. | Jul 2004 | A1 |
20040153073 | Orbay | Aug 2004 | A1 |
20040158247 | Sitiso et al. | Aug 2004 | A1 |
20040158252 | Prager et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
672245 | Nov 1989 | CH |
10015734 | Sep 2001 | DE |
10226496 | Jan 2003 | DE |
10227899 | Mar 2003 | DE |
0807420 | Nov 1997 | EP |
0897697 | Feb 1999 | EP |
0988833 | Mar 2000 | EP |
1153577 | Nov 2001 | EP |
1210914 | Jun 2002 | EP |
1221308 | Oct 2002 | EP |
1250892 | Oct 2002 | EP |
1306057 | May 2003 | EP |
1346697 | Sep 2003 | EP |
1364623 | Nov 2003 | EP |
2674118 | Sep 1992 | FR |
2744011 | Aug 1997 | FR |
2758971 | Aug 1998 | FR |
2790198 | Sep 2000 | FR |
2792185 | Oct 2000 | FR |
5146451 | Jun 1993 | JP |
10043202 | Feb 1998 | JP |
11056870 | Mar 1999 | JP |
2002000611 | Jan 2002 | JP |
2003265493 | Sep 2003 | JP |
WO 9535067 | Dec 1995 | WO |
WO 9625892 | Aug 1996 | WO |
WO 9909903 | Mar 1999 | WO |
WO 9959492 | Nov 1999 | WO |
WO 03015647 | Feb 2003 | WO |
WO 03039384 | May 2003 | WO |
WO 03043513 | May 2003 | WO |
WO 03055401 | Jul 2003 | WO |
WO 03063714 | Aug 2003 | WO |
WO 03084415 | Oct 2003 | WO |
WO 03101321 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080172094 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10877096 | Jun 2004 | US |
Child | 11841066 | US | |
Parent | PCT/CH01/00740 | Dec 2001 | US |
Child | 10877096 | US |