The present invention relates to a device for penetrating and exploding a target.
Targets such a rockets, artillery and mortars pose a challenge to conventional lethality approaches to defeating them. Conventional means include gun-launched projectiles or warhead fragments. Both of these means rely upon large amounts of kinetic energy to penetrate the target skin with sufficient energy remaining to induce explosion. Propelling a small mass at high speed, increasing the mass of a hypersonic projectile, or a combination of both typically achieves this large amount of kinetic energy. Blast-fragmentation warheads achieve hypervelocity velocities by explosive force on the small projectiles.
Incendiary materials have been used with projectiles to increase the velocity of penetrating devices by forming a shaped charge or propelling a rod shape forward. In one conventional device, an incendiary material is used to enhance behind armor damage, but this has been with a hyper-velocity projectile and the incendiary material is packaged within a hollow cylindrical rod.
The challenge with the blast-fragmentation approach is that it requires complex and sophisticated fuzing to initiate the fragments so that some will be ensured to hit the target.
The challenge with the conventional approaches is that the high accelerations required for the projectiles to reach the needed hypervelocity speeds are not conducive to sensors and devices needed to guide the projectiles. The challenge with guided projectiles is that they reach the target at relatively low supersonic speeds where kinetic energy is low.
There are many designs of devices to penetrate and explode a target that are well known in the art; however, considerable shortcomings remain.
The novel features believed characteristic of the invention are set forth in the appended claims. However, the invention itself, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, in which the leftmost significant digit(s) in the reference numerals denote(s) the first figure in which the respective reference numerals appear, wherein:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
The invention relates in general to a lethality device packaged within a guided missile to penetrate and cause explosion of a target and more particularly to penetrating the outer skin and subsequently raising the internal temperature and pressure of the internal contents of the target by injecting incendiary material to induce explosion.
The present invention allows a projectile of relatively moderate speed to defeat these difficult targets such as in-flight mortars. This is accomplished in a two step process. The first step is penetrating the target. The second step is injecting the incendiary material.
The first step is accomplished by designing the load path of the host missile or projectile to be transferred to a forward penetrator structure, such as a rod or pin component packaged in the nose of the missile. In this manner, substantially the entire weight of the missile puts pressure on the penetrator structure. The mechanism of the defeat is a broaching or puncturing of the outer skin. This is a structural failure by deformation rather than the hydrodynamic failure induced by hypersonic projectiles.
The second step to defeating the target is by injecting incendiary material inside the target shell. This is accomplished by momentum transfer when the incendiary material is packaged between the centrally-located penetrator structure and the outer missile nose. The incendiary material (such as thermite) is self igniting and burns at a temperature higher than that required to ignite the internal contents of a target, such as a mortar.
In one particular embodiment, shown in
In other words, upon impact with a target, case 115, as well as other structure of projectile 101 disposed aft of actuation system 111, exerts pressure on actuation system 111. Moreover, actuation system 111 exerts pressure on battery 109 and battery 109 exerts pressure on bulkhead 107. Note that, if bulkheads, such as bulkhead 107 exist between other components, pressure is exerted via the bulkheads. For example, if a bulkhead, such as bulkhead 107, exists between actuation system 111 and battery 109, actuation system 111 exerts pressure on battery via the bulkhead. Bulkhead 107 exerts pressure on penetrator structure 103, and preferably on nose 105, to penetrate the target by deformation.
Once the target has been penetrated, an incendiary material is injected into the target. In the illustrated embodiment, an incendiary material 117 is disposed near penetrator structure 103, such as within a body of projectile 101 about penetrator structure 103 or within a body of projectile 101 and disposed in bulkhead holes. As penetrator structure 103 progresses into the target, incendiary material 117 self-ignites and is injected into the target to explode combustible or explosive material disposed within the target. Examples of incendiary material 117 include, but are not limited to, one or more of white phosphorous; mischmetal; an explosive material, such as a cyclotetramethylene-tetranitramine-based substance (i.e., an HMX-based substance), a cyclotrimethylenetrinitramine-based substance (i.e., an RDX-based substance), a pentaerythritol tetranitrate-based substance (i.e., a PETN-based substance), and the like; and a binary mix of fuel and oxidizer, such as thermite and materials containing reactive metals, such as lithium, sodium, potassium, magnesium, calcium, barium, cesium, and the like.
Thus, in one particular embodiment depicted in
The present invention provides significant advantages, including: (1) providing a means for penetrating and exploding a target without the use of sophisticated fuzing techniques and (2) providing a means for penetrating and exploding a target without subjecting the projectile to high accelerations, which may impair sensors and/or other devices of the projectile.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below. It is apparent that an invention with significant advantages has been described and illustrated. Although the present invention is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/74001 | 7/20/2007 | WO | 00 | 1/16/2009 |
Number | Date | Country | |
---|---|---|---|
60832366 | Jul 2006 | US |