Device for placing transmyocardial implant

Information

  • Patent Grant
  • 7326219
  • Patent Number
    7,326,219
  • Date Filed
    Monday, September 9, 2002
    21 years ago
  • Date Issued
    Tuesday, February 5, 2008
    16 years ago
Abstract
The present invention relates to a transmyocardial implant placement device with an introducer, a transmyocardial implant mounted about the introducer, a wound closure clip engaged to the introducer adjacent the transmyocardial implant. The introducer is adapted to be inserted through a lumen of a coronary vessel and a myocardium of a patient into a chamber of the patient's heart and form a blood flow pathway through the myocardium between the heart chamber and the coronary vessel. When the introducer is inserted, the wound closure clip engages an outer wall of the coronary vessel and the transmyocardial implant extends from the heart chamber to the lumen of the coronary vessel. The transmyocardial implant is expanded in the blood flow pathway and the introducer retracted, leaving the transmyocardial implant in the within the blood flow pathway. As the introducer is retracted, the wound closure clip disengages from the introducer and closes an opening created by the introducer in the outer wall of the coronary vessel.
Description
FIELD OF THE INVENTION

The present invention relates to placing devices in the myocardium of a patient. More specifically, the present invention relates to placement of devices through the myocardium for revascularizing occluded coronary vessels.


BACKGROUND OF THE INVENTION

Devices which are placed in the heart wall of a patient to revascularize an occluded coronary vessel as described in U.S. Pat. No. 5,944,019, the disclosure of which is incorporated herein by reference, are known. A variety of procedures for placing these devices have been described, including traditional by-pass open chest procedures, non-bypass open chest procedures, catheterization, and other non-open chest procedures. Improvements to the methods and apparatus used to place transmyocardial implants are desirable.


SUMMARY OF THE INVENTION

One aspect of the present disclosure relates to a transmyocardial implant placement device with an introducer, a transmyocardial implant mounted about the introducer, and a wound closure clip engaged to the introducer adjacent the transmyocardial implant. The introducer is adapted to be inserted through a coronary vessel and a myocardium of a patient into a chamber of the patient's heart and form a blood flow pathway through the myocardium between the heart chamber and the coronary vessel. When the introducer is inserted, the wound closure clip engages an outer wall of the coronary vessel and the transmyocardial implant extends from the heart chamber to the lumen of the coronary vessel. The transmyocardial implant is expanded in the blood flow pathway and the introducer retracted, leaving the transmyocardial implant in the within the blood flow pathway. As the introducer is retracted, the wound closure clip disengages from the introducer and closes an opening created by the introducer in the outer wall of the coronary vessel. Other inventive aspects are also disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of an embodiment of a transmyocardial implant placement device according to the present invention.



FIG. 2 is a schematic view of an alternative embodiment of a transmyocardial implant device according to the present invention inserted through a coronary vessel and a myocardium of a patient's heart into a heart chamber.



FIG. 3 is a schematic view of the transmyocardial implant device of FIG. 2, with an outer sheath retracted.



FIG. 4 is a schematic view of the transmyocardial implant device of FIG. 2, with the distal end of the device and the implant expanded.



FIG. 5 is a schematic view of the transmyocardial implant device of FIG. 2, with the distal end of the device collapsed and the implant expanded.



FIG. 6 is the schematic view of the transmyocardial implant device of FIG. 2, with the expanded implant in place in the myocardium, the device retracted and the wound closure clip open in the outer wall of the coronary vessel.



FIG. 7 is a top view of the wound closure clip of FIG. 6.



FIG. 8 is the schematic view of FIG. 6, with the wound closure clip closing the opening in the outer wall of the coronary vessel.



FIG. 9 is an enlarged view of the wound closure clip of FIG. 8.



FIG. 10 is a partial cross-sectional view of the wound closure clip of FIG. 9.



FIG. 11 is a side view of an alternative embodiment of a transmyocardial implant according to the present invention.



FIG. 12 is a top view of the transmyocardial implant of FIG. 11.



FIG. 13 is a cross-sectional view of the transmyocardial implant taken along line 13-13 in FIG. 12.



FIG. 14 is a schematic view of the transmyocardial implant of FIG. 11 implanted in a myocardium.



FIGS. 15 through 29 illustrate a sequence of steps for insertion of the transmyocardial implant of FIG. 11 into an implantation site in a myocardium.



FIG. 30 is a side view of an alternative embodiment of a transmyocardial implant placement device according to the present invention.



FIG. 31 is a cross-sectional view of a distal end of the transmyocardial implant placement device of FIG. 30.





DETAILED DESCRIPTION

Transmyocardial implants or direct revascularization devices (DRD's) are known. DRD's have been placed in the heart wall to provide blood flow to areas of a patient's vascular system where flow has been impeded for some reason. Often, DRD's have been intended for use in improving or restoring blood flow to coronary vessels downstream of an arterial occlusion, as an alternative to more traditional vein graft bypass procedures. DRD's are also suitable for use in follow-up procedures for patients for whom an earlier vein graft by-pass failed, or for patients who are not suitable candidates for traditional vein graft by-pass procedures, such as diabetic patients or patients with significant circulatory problems.


I. First Embodiment

Regardless of the reason for use of DRD's, methods and apparatuses for placing the implants in a myocardium of a patient are required. One approach involves implanting DRD's through the myocardium in a traditional open chest procedure utilizing a by-pass machine. A device 10 of FIG. 1 has been developed to facilitate implanting implants within a myocardium. Device 10 could be used in an open chest procedure, but preferably is used in a thoracoscopic procedure which does not require pulmonary by-pass. Device 10 includes a handle 12, a shaft 14, an expander actuator 16 and an expander 18. Shaft 14 has a distal end 22 and a proximal end 24. Expander 18 is located proximate distal end 22 and is movable from a contracted position, as shown in FIG. 1 and a dilated position. Releasably mounted about expander 18 is an implant 20. Implant 20 is expandable between a collapsed shape, as shown in FIG. 1 and an expanded shape. Such expandable implants are known in the art and described in U.S. Pat. No. 5,755,682, issued May 26, 1998.


To place implant 20 at a site within a myocardium, distal end 22 is maneuvered adjacent the myocardium at the desired site. Distal end 22 is then advanced through the myocardium until implant 20 is positioned within the myocardium to provide fluid communication between a heart chamber on one side of the myocardium and a coronary vessel lying on an opposite side of the myocardium. Expander 18 is moved to the dilated position by actuator 16, expanding implant 20 from the collapsed shape to the expanded shape. Expander 18 is then moved back to the contracted position and distal end 22 of device 10 is removed from the myocardium.


Alternatively, implant 20 may be a self-expanding implant and expander 18 may be adapted to hold implant 20 in a collapsed shape until positioned within the myocardium. Actuator 16 would then release implant 20 from device 10, allowing implant 20 to expand within the myocardium and provide fluid communication between the heart chamber and the coronary vessel.


It is anticipated that device 10 may be adapted for use with or without a vessel closure device such as described herein below.


II. Second Embodiment


FIGS. 2 through 8 show a first alternative device 210 and show a process for utilizing a transmyocardial implant placement device in accordance with the present invention. Device 210 may be used thoracoscopically to place an implant, as described below. Alternatively, device 210 may also be used in an open chest procedure, either on or off bypass-machine, preferably off bypass. Device 210 includes a shaft 214 with an outer sheath 228 and an inner catheter 230. Outer sheath 228 includes a clip slot 26 for releasably retaining wound closure clip 34. As shown in FIG. 5, inner catheter 230 includes a distal end 222 and an expander 218 proximate distal end 222. Implant 220 is releasably mounted about expander 218 and wound closure clip 34 is releasably mounted in clip slot 26.


To place an implant with device 210, distal end 222 forms and is inserted through an opening 36 in an outer wall 56 of a coronary vessel 52, through myocardium 50 of a patient into heart chamber 48, forming a blood flow pathway 40 from heart chamber 48 to lumen 54 of vessel 52. Device 210 is inserted far enough to allow wound closure clip 34 to engage outer wall 56 of vessel 52. Once clip 34 engages outer wall 56, outer sheath 228 is retracted, releasing clip 34 from clip slot 26 and exposing implant 220 within blood flow pathway 40. Expander 218 is then expanded, causing implant 220 to expand within blood flow pathway 40 and form a durable support for blood flow pathway 40. Expander 218 is then contracted to its insertion size, while implant 220 remains expanded, releasing implant 220 from inner catheter 230. Expander 218 may be any of a number of known devices which allow expansion and contraction by remote actuation, such as a balloon expander. Alternatively, it is anticipated that implant 220 can be made of a self-expanding material, such as nitinol. Such a self-expanding implant 220 would be releasably mounted to inner catheter 230 in a collapsed state until positioned within myocardium 50. Inner catheter 230 would not require expander 218, only a releasable mount to hold implant 220 in a collapsed state. When released from inner catheter 230, implant 220 would expand within blood flow pathway 40 as shown in FIG. 5.


Device 210 can then be fully retracted from the patient's body leaving behind implant 220 within myocardium 50 and wound closure clip 34 in opening 36 in outer wall 56 of coronary vessel 52. Implant 220 is preferably sufficiently rigid to maintain blood flow pathway 40 open during both systole and diastole of the heart but may be collapsible in other embodiments. FIGS. 6 and 7 show a temporary open state of wound closure clip 34 and opening 36 after device 210 has been removed. Clip 34 is held in the open state by the presence of inner catheter 230 extending therethrough. Clip 34 is spring biased to close upon the removal of inner catheter 230. When clip 34 closes, opening 36 is pulled closed, thereby sealing blood flow out of vessel 52 at the site of insertion of device 210. Implant 220 remains in place within myocardium 50 and maintains blood flow path 40 between heart chamber 48 and lumen 54 of coronary vessel 52.


Wound closure clip 34 is similar to the autoanastomosis device disclosed and claimed in the jointly assigned U.S. patent application Ser. No. 09/768,930, filed Jan. 24, 2001, the disclosure of which is incorporate herein by reference. Wound closure clip 34 is formed of a flexible, resilient material that is biased toward to closed position shown in FIG. 8 but which may be temporarily deformed into an open position and mounted in clip slot 26, as shown in FIG. 2. Clip 34 is adapted to fixedly engage the sides of opening 36 in outer wall 56 of coronary vessel 52 upon insertion of device 210 into the position shown in FIG. 2. Once engaged to outer wall 56, clip 34 is held in an open position by inner catheter 230 passing through clip 34, as shown in FIGS. 2 through 5. Once device 210 has been retracted from clip 34, clip 34 returns to its biased closed position, carrying the edges of opening 26 in outer wall 56 to be adjacent each other and encourage rapid sealing and healing of opening 36. Clip 34 may be made of a bio-incorporated material or can be made of a more durable material such as nickel titanium alloy, provided that the material used has sufficient elastic characteristics to allow deformation about device 210 and return to a closed position upon retraction of device 210.


Additional detail of clip 34 is shown in FIGS. 7, 9 and 10. Clip 34 includes a pair of central ribs 58 which are joined at a hinge 64. When expanded to a fully open position, ribs 58 define a ring shape, as shown in FIG. 7. Extending from each rib 58 in opposite directions are one or more paddles 60. On a vessel side of each paddle 60 are tines 62 (i.e., teeth or barbs). FIGS. 9 and 10 show clip 34 engaging outer wall 56 of vessel 54 and closing opening 36. In FIG. 2, clip 34 is shown mounted about device 210 and opened. Tines 62 are angled with respect to paddles 60 so that when clip is mounted about device 210 as shown in FIG. 2, tines 62 engage outer wall 56 with a minimum of damage to outer wall 56 and allow clip 34 to pull opening 36 closed. As shown, tines 62 are angled away from rib 58. Alternatively, tines 62 could be angled to a greater or lesser extent away from rib 58 or angled toward rib 58. Ribs 58 are preferably made of a shape memory material or some type of resilient, deformable material which allows clip 34 to be opened for mounting about device 10, 110 or 210 and being biased closed when device 10, 110 or 210 is withdrawn.


III. Third Embodiment

An alternative embodiment of implant 320 is shown in FIGS. 11 through 14 including a tee-shaped extension 302 at an angle to a transmyocardial leg 304. When inserted as shown in FIG. 14, extension 302 lies axially within lumen 54 of vessel 52. Both extension 302 and leg 304 are hollow conduits allowing fluid communication within lumen 54 along the axial length of vessel 52 and between heart chamber 48 and lumen 54 of vessel 52, respectively. Leg 304 is preferably made of a material sufficiently rigid to resist collapse and able to maintain an open lumen during systole and diastole of the heart, but may be collapsible in other embodiments.


Implant 320 is inserted in a process shown in the FIGS. 15 through 29. A dilator 70 is placed through an incision in coronary vessel 52 as shown in FIGS. 15 through 18. Dilator 70 expands and opens the incision sufficiently to permit insertion of a device 72, which includes a shaft 76 and a guide 74, as shown in FIG. 19. Guide 74 includes a longitudinal split 78 beginning at a distal end 80. Guide 74 includes an open sided area 75 and a closed sided area 77, proximate distal end 80 through which split 78 extends, as shown in FIGS. 20 and 20A. Open sided area 75 permits insertion of implant 320 within closed sided area 77 for placement within myocardium 50, as described below.


Shaft 76 is used to position guide 74 through dilator 70 within myocardium 50 so that distal end 80 extends into heart chamber 48, as shown in FIG. 20. Shaft 76 is then withdrawn, as shown in FIG. 21, and implant 320 is inserted through guide 74 to a position within myocardium 50, as shown in FIGS. 22 and 23. Guide 74 is then retracted from myocardium 50, as shown in FIG. 24, with split 78 opening to permit guide 74 to be removed without disturbing implant 320. Implant 320 is now permitting fluid communication between heart chamber 48 and lumen 54 of vessel 52. As shown in FIGS. 25 through 28, dilator 70 is collapsed and removed from the incision in vessel 52 and extension 302 helps seal the incision in vessel wall 56, reducing the need for mechanical closure devices, such as sutures, surgical adhesives, or clip 34, as shown in FIG. 29.


Implant 320 could also be adapted so that extension 302 extends different lengths on either side from transmyocardial leg 304, forming more of an L-shape as opposed to a T-shape.


IV. Fourth Embodiment

Referring now to FIGS. 30 and 31, another alternative placement device 110 is shown. Device 110 includes shaft 114 with an inner catheter 130 and an outer sheath 128. Handle 112 is attached to outer sheath 128 at proximal end 124 and handle 113 is attached to inner catheter 130. Inner catheter 130 includes an inner lumen 132 and is slidably retained within outer sheath 128. A self expanding implant 120 is mounted about inner catheter 130 in a implant receiving area 118 adjacent a distal end 122 and held in a collapsed form by outer sheath 128. Alternatively, implant 120 could be balloon-expandable and a balloon expander would be included at distal end 122 of inner catheter 130.


Distal end 122 includes a dilator 123 to ease insertion of the device 110 into a desired location of a patient's body and a transition element 125. Transition element 125 provides a transition of shaft 114 from the diameter of dilator 123 to the diameter of outer sheath 128 and Clip shoulder 126 is formed about outer sheath 128 at a position offset from distal end 122. A wound closure clip 34, as discussed previously, or similar device, may be releasably mounted about device 110 at clip shoulder 126. The extent of offset from distal end 122 is such that when device 110 is inserted within a heart to position stent 120 in the heart wall, wound closure clip 34 would engage outer wall 56 of blood vessel 52, as shown in FIG. 2. Inner lumen 132 may provides a pathway to inflate the balloon expander, if a balloon-expandable stent were used.


Device 110 is intended for use in a similar fashion to device 10, as shown in FIGS. 2 through 8, in placing implant 120 within myocardium 50 between vessel 56 and heart chamber 48. To place an implant 120 with device 110, distal end 122 is maneuvered proximate to the desired implantation site through outer wall 56 of vessel 52 and positioned so that implant 120 in a collapsed form underneath outer sheath 128 is correctly oriented at the implantation site in myocardium 50. Wound closure clip 34 at shoulder 126 would engage outer wall 56 of vessel 52. Retraction of outer sheath 128 proximally would release implant 120 and allow implant 120 to self expand to an expanded form. Retraction of outer sheath 128 would also leave wound closure clip 34 in place on outer wall 56. Once implant 120 is fully expanded, implant 120 is no longer held about device 110, allowing device 110 to be withdrawn from the patient's body. Withdrawal of device 110 would permit wound closure clip 34 to close and seal the opening in outer wall 56. Once expanded within at the implantation site, implant 120 is sufficiently rigid to resist collapse and maintain an open conduit during both systole and diastole of the heart.


Alternatively, implant 120 may be a balloon-expandable implant and a balloon expander included under implant receiving area 118. Device 110 could then be used in a fashion similar to that described above with regard to device 10 and shown in FIGS. 2 through 8.


The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. A transmyocardial implant placement device comprising: a catheter, with a distal end and a proximal end;a dilator mounted to the distal end of the catheter;an expander mounted to the catheter immediately proximal the dilator;a transmyocardial implant with a distal end and a proximal end, the transmyocardial implant having a collapsed condition and an expanded condition and mounted about the expander in the collapsed position; anda vessel wound closure clip positioned proximate to the proximal end of the collapsed transmyocardial implant.
  • 2. The transmyocardial implant placement device of claim 1, wherein the catheter is adapted to be inserted through an outer wall of a coronary vessel, an inner wall of a coronary vessel and a myocardium of a patient into a chamber of the patient's heart and form a blood flow pathway through the myocardium between the heart chamber and lumen of the coronary vessel, with the wound closure clip engaging the outer wall of the coronary vessel and the transmyocardial implant extending from the heart chamber through the inner wall of the coronary vessel.
  • 3. The transmyocardial implant placement device of claim 2, wherein the expander is adapted to expand the transmyocardial implant to the expanded condition so that the transmyocardial implant defines the blood flow pathway.
  • 4. The transmyocardial implant placement device of claim 3, wherein the expander can be contracted and the catheter retracted from the myocardium, leaving the transmyocardial implant in the expanded condition within the blood flow pathway, releasing the wound closure clip as the catheter is retracted, the wound closure clip closing an opening created by the catheter in the outer wall of the coronary vessel.
  • 5. The transmyocardial implant placement device of claim 1, wherein the transmyocardial implant in the expanded position within the myocardium maintains an open blood flow pathway during systole and diastole.
  • 6. The transmyocardial implant placement device of claim 1, wherein the device includes an outer sheath about the catheter and the wound closure clip is releasably mounted to the outer sheath.
  • 7. The transmyocardial implant placement device of claim 6, wherein the wound closure clip is releasably mounted to the outer sheath in a clip slot.
  • 8. The transmyocardial implant placement device of claim 1, wherein the wound closure clip is movable between an open and a closed position wherein the clip is biased toward the closed position.
  • 9. The transmyocardial implant placement device of claim 8, wherein the clip includes teeth adapted to embed in the outer wall of the coronary vessel and wherein the clip is adapted to pull the vessel opening closed when it moves from the open position to the closed position.
  • 10. A transmyocardial implant placement device comprising: arigid shaft;an expender mounted to the shaft, the expander expandable from a collapsed state to a dilated state and collapsible from the cilated state to the collapsed state;an actuator to actuate the expansion and collapse of the expander; anda myocardial implant adapted to be mounted within a myocardium and extend from a heart chamber to a lumen of a coronary vessel, the implant being expandable between a collapsed state and an expanded state, and the implant releasably mounted to the rigid shaft in the collapsed state so that the expander will expand the implant from the collapsed state to the expanded state,wherein a wound closure clip is releasably mounted to the rigid shaft proximal the implant and the actuator.
  • 11. A method of implanting a transmyocardial implant comprising the steps of: providing an implant device with a shaft including the transmyocardial implant located proximate a distal end;inserting the distal end through an outer wall of a coronary vessel,an inner wall of the coronary vessel and a myocardium into a heart chamber, thereby creating an opening in the outer wall of the coronary vessel and also creating a passage between the heart chamber and a lumen of the vessel;implanting the implant within the passage; andwithdrawing the distal end of the implant device from the myocardium and releasing a wound closure clip from about the shaft, the wound closure clip engaging the outer wall of the coronary vessel and drawing the opening closed as the implant device is withdrawn.
  • 12. The method of claim 11, wherein the implant device includes the implant in a collapsed state and including the further step of actuating the transmyocardial implant from the collapsed state to an expanded state within the passage.
  • 13. A method of implanting a transmyocardial implant within a myocardium comprising the steps of: incising an outer wall of a coronary vessel lying on an outer surface of the myocardium;forming a path through the myocardium between the coronary vessel and a heart chamber on an opposite surface of the myocardium with an implant placement guide inserted through the incision;inserting the transmyocardial implant within the guide until a hollow, open-ended myocardial leg of the implant is within the path and a hollow open-ended vessel portion of the implant is within a lumen of the coronary vessel, the myocardial leg and the vessel portion in fluid communication, the vessel portion including an upstream leg and a downstream leg, the legs extending axially within the lumen upstream and downstream from the myocardial leg;withdrawing the guide from the myocardium, the vessel portion remaining within the lumen allowing axial blood flow and aiding the closure of the incision, the myocardial leg being sufficiently rigid to remain open and in fluid communication with the vessel portion during systole and diastole.
  • 14. The method of claim 13, wherein the myocardial leg extends beyond the myocardium into the heart chamber.
  • 15. The method of claim 13, wherein the upstream leg and the downstream leg extend equal distances from the myocardial leg.
  • 16. The method of claim 13, wherein the upstream leg and the downstream leg extend different distances from the myocardial leg.
US Referenced Citations (431)
Number Name Date Kind
4953553 Tremulis Sep 1990 A
5193546 Shaknovich Mar 1993 A
5258008 Wilk Nov 1993 A
5287861 Wilk Feb 1994 A
5330486 Wilk Jul 1994 A
5344426 Lau et al. Sep 1994 A
5389096 Aita et al. Feb 1995 A
5409019 Wilk Apr 1995 A
5411552 Andersen et al. May 1995 A
5429144 Wilk Jul 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5554119 Harrison et al. Sep 1996 A
5593434 Williams Jan 1997 A
5618299 Khosravi et al. Apr 1997 A
5662124 Wilk Sep 1997 A
5733267 Del Toro Mar 1998 A
5755682 Knudson et al. May 1998 A
5758663 Wilk et al. Jun 1998 A
5807384 Mueller Sep 1998 A
5810836 Hussein et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830222 Makower Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5876373 Giba et al. Mar 1999 A
5878751 Hussein et al. Mar 1999 A
5885259 Berg Mar 1999 A
5908028 Wilk Jun 1999 A
5908029 Knudson et al. Jun 1999 A
5922022 Nash et al. Jul 1999 A
5925012 Murphy-Chutorian et al. Jul 1999 A
5931848 Saadat Aug 1999 A
5935119 Guy et al. Aug 1999 A
5935161 Robinson et al. Aug 1999 A
5938632 Ellis Aug 1999 A
5944019 Knudson et al. Aug 1999 A
5968064 Selmon et al. Oct 1999 A
5971993 Hussein et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5980533 Holman Nov 1999 A
5980548 Evans et al. Nov 1999 A
5984956 Tweden et al. Nov 1999 A
5997525 March et al. Dec 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6004261 Sinofsky et al. Dec 1999 A
6004347 McNamara et al. Dec 1999 A
6007543 Ellis et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6026814 LaFontaine et al. Feb 2000 A
6029672 Vanney et al. Feb 2000 A
6035856 LaFontaine et al. Mar 2000 A
6036677 Javier, Jr. et al. Mar 2000 A
6036697 DiCaprio Mar 2000 A
6045565 Ellis et al. Apr 2000 A
6053924 Hussein Apr 2000 A
6053942 Eno et al. Apr 2000 A
6056743 Ellis et al. May 2000 A
6063114 Nash et al. May 2000 A
6067988 Mueller May 2000 A
6068638 Makower May 2000 A
6071292 Makower et al. Jun 2000 A
6076529 Vanney et al. Jun 2000 A
6080163 Hussein et al. Jun 2000 A
6080170 Nash et al. Jun 2000 A
6092526 LaFontaine et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6093177 Javier, Jr. et al. Jul 2000 A
6093185 Ellis et al. Jul 2000 A
D429334 Solem Aug 2000 S
6102941 Tweden et al. Aug 2000 A
6113630 Vanney et al. Sep 2000 A
6113823 Eno Sep 2000 A
6120520 Saadat et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6126649 VanTassel et al. Oct 2000 A
6126654 Giba et al. Oct 2000 A
6132451 Payne et al. Oct 2000 A
6139541 Vanney et al. Oct 2000 A
6155264 Ressemann et al. Dec 2000 A
6156031 Aita et al. Dec 2000 A
6157852 Selmon et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171251 Mueller et al. Jan 2001 B1
6182668 Tweden et al. Feb 2001 B1
6186972 Nelson et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6193726 Vanney Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6196230 Hall et al. Mar 2001 B1
6197050 Eno et al. Mar 2001 B1
6197324 Crittenden Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6203556 Evans et al. Mar 2001 B1
6213126 LaFontaine et al. Apr 2001 B1
6214041 Tweden et al. Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217575 DeVore et al. Apr 2001 B1
6221049 Selmon et al. Apr 2001 B1
6223752 Vanney et al. May 2001 B1
6224584 March et al. May 2001 B1
6231546 Milo et al. May 2001 B1
6231551 Barbut May 2001 B1
6231587 Makower May 2001 B1
6235000 Milo et al. May 2001 B1
6237607 Vanney et al. May 2001 B1
6238406 Ellis et al. May 2001 B1
6241667 Vetter et al. Jun 2001 B1
6248112 Gambale et al. Jun 2001 B1
6250305 Tweden Jun 2001 B1
6251079 Gambale et al. Jun 2001 B1
6251104 Kesten et al. Jun 2001 B1
6251116 Shennib et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6253768 Wilk Jul 2001 B1
6253769 LaFontaine et al. Jul 2001 B1
6254564 Wilk et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6258119 Hussein et al. Jul 2001 B1
6261304 Hall et al. Jul 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6283983 Makower et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6287317 Makower et al. Sep 2001 B1
6290709 Ellis et al. Sep 2001 B1
6290728 Phelps et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6302892 Wilk Oct 2001 B1
6322548 Payne et al. Nov 2001 B1
6330884 Kim Dec 2001 B1
6344027 Goll Feb 2002 B1
6350248 Knudson et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6363939 Wilk Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6379319 Garibotto et al. Apr 2002 B1
6387119 Wolf et al. May 2002 B2
6390098 LaFontaine et al. May 2002 B1
6395208 Herweck et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6406488 Tweden et al. Jun 2002 B1
6406491 Vanney Jun 2002 B1
6409697 Eno et al. Jun 2002 B2
6409751 Hall et al. Jun 2002 B1
6416490 Ellis et al. Jul 2002 B1
6423089 Gingras et al. Jul 2002 B1
6432119 Saadat Aug 2002 B1
6432126 Gambale et al. Aug 2002 B1
6432127 Kim et al. Aug 2002 B1
6432132 Cottone et al. Aug 2002 B1
6443158 LaFontaine et al. Sep 2002 B1
6447522 Gambale et al. Sep 2002 B2
6447539 Nelson et al. Sep 2002 B1
6454760 Vanney Sep 2002 B2
6454794 Knudson et al. Sep 2002 B1
6458092 Gambale et al. Oct 2002 B1
6458140 Akin et al. Oct 2002 B2
6458323 Boekstegers Oct 2002 B1
6464709 Shennib et al. Oct 2002 B1
6464999 Huo et al. Oct 2002 B1
6475226 Belef et al. Nov 2002 B1
6475244 Herweck et al. Nov 2002 B2
6482220 Mueller Nov 2002 B1
6491689 Ellis et al. Dec 2002 B1
6491707 Makower et al. Dec 2002 B2
6506408 Palasis Jan 2003 B1
6508783 DeVore Jan 2003 B2
6508824 Flaherty et al. Jan 2003 B1
6508825 Selmon et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6514217 Selmon et al. Feb 2003 B1
6514271 Evans et al. Feb 2003 B2
6517527 Gambale et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524323 Nash et al. Feb 2003 B1
6524324 Mueller et al. Feb 2003 B1
6530914 Mickley Mar 2003 B1
6533779 Kinsella et al. Mar 2003 B2
6544220 Shuman et al. Apr 2003 B2
6544230 Flaherty Apr 2003 B1
6559132 Holmer May 2003 B1
6561998 Roth et al. May 2003 B1
6562066 Martin May 2003 B1
6565528 Mueller May 2003 B1
6565594 Herweck et al. May 2003 B1
6569145 Shmulewitz et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6573311 Martakos et al. Jun 2003 B1
6575168 LaFontaine et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6582444 Wilk Jun 2003 B2
6582463 Mowry et al. Jun 2003 B1
6585650 Solem Jul 2003 B1
6587718 Talpade Jul 2003 B2
6589164 Flaherty Jul 2003 B1
6599304 Selmon et al. Jul 2003 B1
6602241 Makower et al. Aug 2003 B2
6605053 Kamm et al. Aug 2003 B1
6605113 Wilk Aug 2003 B2
6610100 Phelps et al. Aug 2003 B2
6613026 Palasis et al. Sep 2003 B1
6613081 Kim et al. Sep 2003 B2
6616626 Crank et al. Sep 2003 B2
6616675 Evard et al. Sep 2003 B1
6632470 Morra et al. Oct 2003 B2
6635214 Rapacki et al. Oct 2003 B2
6638237 Guiles et al. Oct 2003 B1
6638247 Selmon et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6641610 Wolf et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652546 Nash et al. Nov 2003 B1
6655386 Makower et al. Dec 2003 B1
6660003 DeVore et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6666863 Wentzel et al. Dec 2003 B2
6669691 Taimisto Dec 2003 B1
6669709 Cohn et al. Dec 2003 B1
6676695 Solem Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6685716 Flaherty et al. Feb 2004 B1
6694983 Wolf et al. Feb 2004 B2
6701932 Knudson et al. Mar 2004 B2
6709425 Gambale et al. Mar 2004 B2
6709427 Nash et al. Mar 2004 B1
6709444 Makower Mar 2004 B1
6719770 Laufer et al. Apr 2004 B2
6726677 Flaherty et al. Apr 2004 B1
6746426 Flaherty et al. Jun 2004 B1
6746464 Makower Jun 2004 B1
6748258 Mueller et al. Jun 2004 B1
6774155 Martakos et al. Aug 2004 B2
6774278 Ragheb et al. Aug 2004 B1
6786929 Gambale et al. Sep 2004 B2
6802858 Gambale et al. Oct 2004 B2
6808498 Laroya et al. Oct 2004 B2
6808504 Schorgl et al. Oct 2004 B2
6830568 Kesten et al. Dec 2004 B1
6854467 Boekstegers Feb 2005 B2
6855160 Gambale et al. Feb 2005 B1
6863684 Kim et al. Mar 2005 B2
6878371 Ueno et al. Apr 2005 B2
6881199 Wilk et al. Apr 2005 B2
6890463 Martakos et al. May 2005 B2
6893413 Martin May 2005 B2
6913021 Knudson et al. Jul 2005 B2
6916304 Eno et al. Jul 2005 B2
6926690 Renati Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929011 Knudson et al. Aug 2005 B2
6945949 Wilk Sep 2005 B2
6949080 Wolf et al. Sep 2005 B2
6949118 Kohler et al. Sep 2005 B2
6953476 Shalev Oct 2005 B1
6953481 Phelps et al. Oct 2005 B2
6955681 Evans et al. Oct 2005 B2
20010000041 Selmon et al. Mar 2001 A1
20010003985 LaFontaine et al. Jun 2001 A1
20010004683 Gambale et al. Jun 2001 A1
20010004690 Gambale et al. Jun 2001 A1
20010004699 Gittings et al. Jun 2001 A1
20010008969 Evans et al. Jul 2001 A1
20010012924 Milo et al. Aug 2001 A1
20010012948 Vanney Aug 2001 A1
20010014813 Saadat et al. Aug 2001 A1
20010016700 Eno et al. Aug 2001 A1
20010018596 Selmon et al. Aug 2001 A1
20010020172 Selmon et al. Sep 2001 A1
20010025643 Foley Oct 2001 A1
20010027287 Shmulewitz et al. Oct 2001 A1
20010029385 Shennib et al. Oct 2001 A1
20010034547 Hall et al. Oct 2001 A1
20010037117 Gambale et al. Nov 2001 A1
20010037149 Wilk Nov 2001 A1
20010039426 Makower et al. Nov 2001 A1
20010039445 Hall et al. Nov 2001 A1
20010041902 Lepulu et al. Nov 2001 A1
20010044631 Akin et al. Nov 2001 A1
20010047165 Makower et al. Nov 2001 A1
20010047197 Foley Nov 2001 A1
20010049523 DeVore et al. Dec 2001 A1
20010053932 Phelps et al. Dec 2001 A1
20020002349 Flaherty et al. Jan 2002 A1
20020004662 Wilk Jan 2002 A1
20020004663 Gittings et al. Jan 2002 A1
20020007138 Wilk et al. Jan 2002 A1
20020029079 Kim et al. Mar 2002 A1
20020032476 Gambale et al. Mar 2002 A1
20020032478 Boekstegers et al. Mar 2002 A1
20020033180 Solem Mar 2002 A1
20020045928 Boekstegers Apr 2002 A1
20020049486 Knudson et al. Apr 2002 A1
20020049495 Kutryk et al. Apr 2002 A1
20020058897 Renati May 2002 A1
20020062146 Makower et al. May 2002 A1
20020065478 Knudson et al. May 2002 A1
20020072699 Knudson et al. Jun 2002 A1
20020072758 Reo et al. Jun 2002 A1
20020077566 Laroya et al. Jun 2002 A1
20020077654 Javier, Jr. et al. Jun 2002 A1
20020082546 Crank et al. Jun 2002 A1
20020092535 Wilk Jul 2002 A1
20020092536 LaFontaine et al. Jul 2002 A1
20020095110 Vanney et al. Jul 2002 A1
20020095111 Tweden et al. Jul 2002 A1
20020095206 Addonizio et al. Jul 2002 A1
20020099392 Mowry et al. Jul 2002 A1
20020099404 Mowry Jul 2002 A1
20020100484 Hall et al. Aug 2002 A1
20020103459 Sparks et al. Aug 2002 A1
20020103495 Cole Aug 2002 A1
20020103534 Vanney et al. Aug 2002 A1
20020111644 Shuman et al. Aug 2002 A1
20020111672 Kim et al. Aug 2002 A1
20020123698 Garibotto et al. Sep 2002 A1
20020123786 Gittings et al. Sep 2002 A1
20020138087 Shennib et al. Sep 2002 A1
20020143285 Eno et al. Oct 2002 A1
20020143289 Ellis et al. Oct 2002 A1
20020143347 Cole et al. Oct 2002 A1
20020144696 Sharkawy et al. Oct 2002 A1
20020161383 Akin et al. Oct 2002 A1
20020161424 Rapacki et al. Oct 2002 A1
20020165479 Wilk Nov 2002 A1
20020165606 Wolf et al. Nov 2002 A1
20020179098 Makower et al. Dec 2002 A1
20020183716 Herweck et al. Dec 2002 A1
20020193782 Ellis et al. Dec 2002 A1
20030015816 Rapacki et al. Jan 2003 A1
20030018379 Knudson et al. Jan 2003 A1
20030044315 Boekstegers Mar 2003 A1
20030045828 Wilk Mar 2003 A1
20030055371 Wolf et al. Mar 2003 A1
20030062650 Martakos et al. Apr 2003 A1
20030069532 Mowry et al. Apr 2003 A1
20030069587 Schorgl et al. Apr 2003 A1
20030073973 Evans et al. Apr 2003 A1
20030074006 Mowry et al. Apr 2003 A1
20030078561 Gambale et al. Apr 2003 A1
20030078562 Makower et al. Apr 2003 A1
20030083678 Herweck et al. May 2003 A1
20030097172 Shalev et al. May 2003 A1
20030100920 Akin et al. May 2003 A1
20030105514 Phelps et al. Jun 2003 A1
20030114872 Mueller et al. Jun 2003 A1
20030120195 Milo et al. Jun 2003 A1
20030120259 Mickley Jun 2003 A1
20030125798 Martin Jul 2003 A1
20030130611 Martin Jul 2003 A1
20030130719 Martin Jul 2003 A1
20030135260 Kohler et al. Jul 2003 A1
20030149126 Martakos et al. Aug 2003 A1
20030149474 Becker Aug 2003 A1
20030153901 Herweck et al. Aug 2003 A1
20030158509 Tweden et al. Aug 2003 A1
20030158573 Gittings et al. Aug 2003 A1
20030163198 Morra et al. Aug 2003 A1
20030171800 Bicek et al. Sep 2003 A1
20030181938 Roth et al. Sep 2003 A1
20030191449 Nash et al. Oct 2003 A1
20030195457 LaFontaine et al. Oct 2003 A1
20030195458 Phelps et al. Oct 2003 A1
20030195606 Davidson et al. Oct 2003 A1
20030204160 Kamm et al. Oct 2003 A1
20030212413 Wilk Nov 2003 A1
20030216678 March et al. Nov 2003 A1
20030216679 Wolf et al. Nov 2003 A1
20030216801 Tweden et al. Nov 2003 A1
20030220661 Mowry et al. Nov 2003 A1
20030225425 Kupiecki et al. Dec 2003 A1
20030229366 Reggie et al. Dec 2003 A1
20030236542 Makower Dec 2003 A1
20040006298 Wilk Jan 2004 A1
20040006301 Sell et al. Jan 2004 A1
20040015193 Lamson et al. Jan 2004 A1
20040015225 Kim et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040037946 Morra et al. Feb 2004 A1
20040044392 Von Oepen Mar 2004 A1
20040058097 Weder Mar 2004 A1
20040059280 Makower et al. Mar 2004 A1
20040073157 Knudson et al. Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040077987 Rapacki et al. Apr 2004 A1
20040077988 Tweden et al. Apr 2004 A1
20040077990 Knudson et al. Apr 2004 A1
20040088042 Kim et al. May 2004 A1
20040106931 Guiles et al. Jun 2004 A1
20040113306 Rapacki et al. Jun 2004 A1
20040118415 Hall et al. Jun 2004 A1
20040122318 Flaherty et al. Jun 2004 A1
20040122347 Knudson et al. Jun 2004 A1
20040133154 Flaherty et al. Jul 2004 A1
20040133225 Makower Jul 2004 A1
20040138562 Makower et al. Jul 2004 A1
20040147837 Mccauley et al. Jul 2004 A1
20040147869 Wolf et al. Jul 2004 A1
20040158143 Flaherty et al. Aug 2004 A1
20040158227 Nash et al. Aug 2004 A1
20040167444 Laroya et al. Aug 2004 A1
20040168691 Sharkawy et al. Sep 2004 A1
20040186507 Hall et al. Sep 2004 A1
20040186557 Gambale et al. Sep 2004 A1
20040186587 Ahern Sep 2004 A1
20040210190 Kohler et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040219180 Gambale et al. Nov 2004 A1
20040220598 Bolduc et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040232587 Martakos et al. Nov 2004 A1
20040236418 Stevens Nov 2004 A1
20040243219 Fischer et al. Dec 2004 A1
20040254451 Mueller et al. Dec 2004 A1
20050004505 Phelps et al. Jan 2005 A1
20050004558 Gambale et al. Jan 2005 A1
20050004648 Boekstegers Jan 2005 A1
20050033220 Wilk et al. Feb 2005 A1
20050043781 Foley Feb 2005 A1
20050055081 Goodwin et al. Mar 2005 A1
20050055082 Ben Muvhar et al. Mar 2005 A1
20050060019 Gambale et al. Mar 2005 A1
20050090748 Makower et al. Apr 2005 A1
20050101903 Kohler et al. May 2005 A1
20050101904 Wilk May 2005 A1
20050119731 Brucker et al. Jun 2005 A1
20050159726 Evans et al. Jul 2005 A1
Foreign Referenced Citations (209)
Number Date Country
2001281277 Nov 2001 AU
757647 Feb 2003 AU
776895 Sep 2004 AU
777443 Oct 2004 AU
778831 Dec 2004 AU
2004231189 Dec 2004 AU
2004242527 Jan 2005 AU
2378589 Feb 2001 CA
2381192 Feb 2001 CA
2385662 Mar 2001 CA
2407987 Nov 2001 CA
2418958 Feb 2002 CA
2435962 Aug 2002 CA
2457755 Feb 2003 CA
0 592 410 Oct 1995 EP
0 732 088 Sep 1996 EP
0 792 624 Sep 1997 EP
0 797 957 Oct 1997 EP
0 797 958 Oct 1997 EP
0 799 604 Oct 1997 EP
0 801 928 Oct 1997 EP
0 815 798 Jan 1998 EP
0 829 239 Mar 1998 EP
0 836 834 Apr 1998 EP
0 853 921 Jul 1998 EP
0 858 779 Aug 1998 EP
0 876 796 Nov 1998 EP
0 876 803 Nov 1998 EP
0 888 750 Jan 1999 EP
0 895 752 Feb 1999 EP
0 934 728 Aug 1999 EP
1 020 166 Jul 2000 EP
1 027 870 Aug 2000 EP
1 088 564 Apr 2001 EP
1 097 676 May 2001 EP
1 166 721 Jan 2002 EP
0 959 815 Dec 2002 EP
1 112 097 Jun 2003 EP
0 954 248 Sep 2004 EP
1 115 452 Nov 2004 EP
1 477 202 Nov 2004 EP
1 107 710 Dec 2004 EP
1 484 081 Dec 2004 EP
1 143 879 Mar 2005 EP
1 516 599 Mar 2005 EP
1 522 278 Apr 2005 EP
1 547 533 Jun 2005 EP
1 027 013 Aug 2005 EP
1 067 869 Nov 2005 EP
1 021 141 Jan 2006 EP
2 316 322 Oct 1998 GB
WO 9632972 Oct 1996 WO
WO 9635469 Nov 1996 WO
WO 9639962 Dec 1996 WO
WO 9639964 Dec 1996 WO
WO 9639965 Dec 1996 WO
WO 9713463 Apr 1997 WO
WO 9713471 Apr 1997 WO
WO 9727893 Aug 1997 WO
WO 9727897 Aug 1997 WO
WO 9727898 Aug 1997 WO
WO 9732551 Sep 1997 WO
WO 9743961 Nov 1997 WO
WO 9803118 Jan 1998 WO
WO 9806356 Feb 1998 WO
WO 9810714 Mar 1998 WO
WO 9816161 Apr 1998 WO
WO 9824373 Jun 1998 WO
WO 9825533 Jun 1998 WO
WO 9838916 Sep 1998 WO
WO 9838925 Sep 1998 WO
WO 9838939 Sep 1998 WO
WO 9838941 Sep 1998 WO
WO 9839038 Sep 1998 WO
WO 9846115 Oct 1998 WO
WO 9846119 Oct 1998 WO
WO 9849964 Nov 1998 WO
WO 9857590 Dec 1998 WO
WO 9857591 Dec 1998 WO
WO 9857592 Dec 1998 WO
WO 9907296 Feb 1999 WO
WO 9908624 Feb 1999 WO
WO 9915220 Apr 1999 WO
WO 9917671 Apr 1999 WO
WO 9917683 Apr 1999 WO
WO 9921490 May 1999 WO
WO 9921510 May 1999 WO
WO 9922655 May 1999 WO
WO 9922658 May 1999 WO
WO 9925273 May 1999 WO
WO 9927985 Jun 1999 WO
WO 9935977 Jul 1999 WO
WO 9935979 Jul 1999 WO
WO 9935980 Jul 1999 WO
WO 9936000 Jul 1999 WO
WO 9936001 Jul 1999 WO
WO 9938459 Aug 1999 WO
WO 9940853 Aug 1999 WO
WO 9940868 Aug 1999 WO
WO 9940963 Aug 1999 WO
WO 9944524 Sep 1999 WO
WO 9948545 Sep 1999 WO
WO 9948549 Sep 1999 WO
WO 9949793 Oct 1999 WO
WO 9949910 Oct 1999 WO
WO 9951162 Oct 1999 WO
WO 9953863 Oct 1999 WO
WO 9955406 Nov 1999 WO
WO 9960941 Dec 1999 WO
WO 9962430 Dec 1999 WO
WO 0009195 Feb 2000 WO
WO 0012029 Mar 2000 WO
WO 0013722 Mar 2000 WO
WO 0015146 Mar 2000 WO
WO 0015147 Mar 2000 WO
WO 0015148 Mar 2000 WO
WO 0015149 Mar 2000 WO
WO 0015275 Mar 2000 WO
WO 0016848 Mar 2000 WO
WO 0018302 Apr 2000 WO
WO 0018323 Apr 2000 WO
WO 0018325 Apr 2000 WO
WO 0018326 Apr 2000 WO
WO 0018331 Apr 2000 WO
WO 0018462 Apr 2000 WO
WO 0021436 Apr 2000 WO
WO 0021461 Apr 2000 WO
WO 0021463 Apr 2000 WO
WO 0024449 May 2000 WO
WO 0033725 Jun 2000 WO
WO 0035376 Jun 2000 WO
WO 0036997 Jun 2000 WO
WO 0041632 Jul 2000 WO
WO 0041633 Jul 2000 WO
WO 0043051 Jul 2000 WO
WO 0045711 Aug 2000 WO
WO 0045886 Aug 2000 WO
WO 0049952 Aug 2000 WO
WO 0049954 Aug 2000 WO
WO 0049956 Aug 2000 WO
WO 0054660 Sep 2000 WO
WO 0054661 Sep 2000 WO
WO 0056224 Sep 2000 WO
WO 0056225 Sep 2000 WO
WO 0056387 Sep 2000 WO
WO 0066007 Nov 2000 WO
WO 0066009 Nov 2000 WO
WO 0066035 Nov 2000 WO
WO 0069345 Nov 2000 WO
WO 0069504 Nov 2000 WO
WO 0071195 Nov 2000 WO
WO 0108566 Feb 2001 WO
WO 0108602 Feb 2001 WO
WO 0110340 Feb 2001 WO
WO 0110341 Feb 2001 WO
WO 0110347 Feb 2001 WO
WO 0110348 Feb 2001 WO
WO 0110349 Feb 2001 WO
WO 0110350 Feb 2001 WO
WO 0117440 Mar 2001 WO
WO 0117456 Mar 2001 WO
WO 0123016 Apr 2001 WO
WO 0141657 Jun 2001 WO
WO 0149187 Jul 2001 WO
WO 0168158 Sep 2001 WO
WO 0170133 Sep 2001 WO
WO 0172239 Oct 2001 WO
WO 0178801 Oct 2001 WO
WO 0182803 Nov 2001 WO
WO 0182837 Nov 2001 WO
WO 0211647 Feb 2002 WO
WO 0211807 Feb 2002 WO
WO 0213698 Feb 2002 WO
WO 0213699 Feb 2002 WO
WO 0213703 Feb 2002 WO
WO 0213704 Feb 2002 WO
WO 0224108 Mar 2002 WO
WO 0224247 Mar 2002 WO
WO 0224248 Mar 2002 WO
WO 0226310 Apr 2002 WO
WO 0226462 Apr 2002 WO
WO 0230325 Apr 2002 WO
WO 0230326 Apr 2002 WO
WO 0230330 Apr 2002 WO
WO 0232330 Apr 2002 WO
WO 0234323 May 2002 WO
WO 0245598 Jun 2002 WO
WO 0249465 Jun 2002 WO
WO 02056937 Jul 2002 WO
WO 02058567 Aug 2002 WO
WO 02058591 Aug 2002 WO
WO 02060509 Aug 2002 WO
WO 02062265 Aug 2002 WO
WO 02064020 Aug 2002 WO
WO 02071974 Sep 2002 WO
WO 02074175 Sep 2002 WO
WO 02091958 Nov 2002 WO
WO 03008005 Jan 2003 WO
WO 03015638 Feb 2003 WO
WO 03017870 Mar 2003 WO
WO 03024307 Mar 2003 WO
WO 03028522 Apr 2003 WO
WO 03030744 Apr 2003 WO
WO 03030784 Apr 2003 WO
WO 03041469 May 2003 WO
WO 03079932 Oct 2003 WO
WO 2004000170 Dec 2003 WO
WO 2004014257 Feb 2004 WO
WO 2004014474 Feb 2004 WO
Related Publications (1)
Number Date Country
20040049171 A1 Mar 2004 US