The invention relates to an apparatus for precisely controlling the negative pressure in tools for calibrating extruded plastic profiles, comprising at least one vacuum pump, a vacuum container and the control valve for adjusting the negative pressure in the tool.
The present invention relates especially to an improved system for the automated precise control of the vacuum supply of calibrating tools and the automated adjustment of the water quantity to the actual demand for achieving the required cooling performance in producing profiles made of plastic in the extrusion process. Calibrating tools for plastic profiles are used for the defined cooling and shaping of the profile strand formed in an extrusion die and comprise at least one dry calibrating tool and at least one calibrating tank (wet caliber), which can also be placed under vacuum, but with a vacuum level which deviates from the dry calibrating tool. At least one vacuum pump is provided for generating the vacuum, which pump is in connection with the calibrating tool and the vacuum level in the dry caliber or in the calibrating tank is controlled to the preselected setpoint value by means of a control valve.
Systems correspond to the state of the art in which one or several dry calibrating tools or wet calibers are in connection with one or several vacuum pumps. The vacuum level will be controlled by means of supplying air to the vacuum system. A vacuum pump and an air-supply valve is necessary for each vacuum control zone. The disadvantageous aspect in such systems is the high energy consumption (a major part of the energy required for generating the vacuum will be destroyed by means of the air supply into the vacuum system) and the enormous noise generation. Systems with a central water supply or supply pumps installed for each calibrating installation are known for cooling the calibrating tools, which systems are set to nominal capacity irrespective of the actual demand for cooling.
Systems with controllable valves and a central vacuum have been proposed for reducing the energy losses, e.g. in AT 006.407 U. Several vacuum pumps are connected in these systems to a central vacuum system integrated in the installation, and several vacuum control zones are supplied with vacuum from there. The control of the vacuum occurs in the manner that a controllable valve is provided for each vacuum control zone which can be triggered manually or in an automated manner, so that the vacuum level is influenced by changing the cross section of the effective flow cross-section in the valve. One or several vacuum pumps are connected to the central vacuum tank. If more than one vacuum pump is connected, the energy consumption can be influenced in such systems in such a way that in the central vacuum tank the vacuum level can be adjusted by leap to the actual demand situation by activating/deactivating individual vacuum pumps. These systems have the following disadvantages:
Cooling systems on the basis of uncontrolled feed pumps (centrifugal pumps) convey with constant power irrespective of the required demand for cooling capacity, with the non-required fraction being lost as blind conveying capacity.
One solution which partly avoids the aforementioned disadvantages has been described in U.S. Pat. No. 5,340,295 A. This system is very costly and complex, and shows a highly unsatisfactory control behavior.
A further disadvantage of the known systems occurs especially in high-performance extrusion. When producing high-quality hollow-chamber profiles made of plastic in the high-performance range, i.e. at extrusion speeds of more than 5 m/min, special demands are placed on the vacuum supply. Even slight fluctuations in the vacuum level in the dry or wet caliber will lead to influences on the dimensional accuracy of the profile.
It is the object of the present invention to reliably avoid these disadvantages and to describe a system with which considerably lower energy consumption can be achieved in combination with improved control behavior at the same time.
This object is achieved in accordance with the invention such a way that the vacuum is generated in a central vacuum container according to the respective demand, wherein the vacuum pump can be power-controlled over a wide range and controllable valves are provided between the central vacuum container and the vacuum consumer. These controllable valves are preferably arranged as servo valves which are supplied with a setpoint input and perform a permanent pressure calibration by means of a sensor line between the actual pressure and the setpoint pressure. The discharge of the cooling water occurs separately from the vacuum in the wet caliber. It is prevented by means of level control in the wet caliber or by means of an intermediate valve that air will reach the water suction line and can lead to pressure fluctuations which can be seen on the extruded profile as “beats”. This ensures a constant vacuum level in the consumer, irrespective of pressure fluctuations in the system. This allows guaranteeing a defined vacuum level for each individual consumer in the system (calibrating zone). The generation of the vacuum occurs by way of a power-controlled vacuum pump whose speed is adjusted automatically to the respective current situation. This leads to a closed system with very low power consumption, which is lower by approximately 50% to 90% over conventional systems.
A speed-controlled feed pump is provided for the cooling water supply, the control signals of which are predetermined by the actually required output and the required cooling water pressure.
It is especially advantageous in connection with the present invention when separate suction is provided from the wet caliber, namely a water suction line and a vacuum line. The vacuum line is in connection with the vacuum system and is primarily provided for the purpose of producing the required negative pressure in the wet caliber by suction of air. The water suction line primarily conveys water and produces the desired cooling effect in the wet caliber in this manner. A substantial improvement in the quality of the control can surprisingly be achieved by this measure.
A means for controlling the water level in the wet caliber is provided in an especially advantageous way, which means can be arranged especially as a floating switch for example. The pressure conditions can be set in an especially constant way in this manner in order to increase the dimensional accuracy and precision of the extruded profile. It is especially further advantageous in this connection when the means for controlling the water level is set to a target level and that the orifice of the vacuum line is arranged above the target level and the orifice of the water suction line is arranged beneath the target level. It is substantially ensured in this manner that substantially single-phase media are present in the mentioned lines.
It is alternatively possible that an intermediate container is provided for water suction from the wet caliber, which intermediate container is connected to the vacuum tank by means of the vacuum line and the water suction line. The required power of the water pumps can be reduced in this manner.
The present invention will be explained in closer detail below by reference to embodiments shown in
| Number | Date | Country | Kind |
|---|---|---|---|
| A 394/2010 | Mar 2010 | AT | national |
| A 757/2010 | May 2010 | AT | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/EP2011/053701 | 3/11/2011 | WO | 00 | 10/18/2012 |