This invention relates generally to the health care industry, and generally providing improved health care to individuals in preparation of electrically active substances for use as medicaments.
There are numerous injectable medicaments in use today, most all generally chemical based. Some emerging types of drugs are prepared with an electrical process. Such electrically prepared drugs offer a new avenue of advancement in a traditional drug field. This invention provides means whereby certain types of electrical medicaments may be more easily and more safely and effectively prepared and administered than present techniques provide. It allows for easier, better access to electrically prepared medications than present techniques.
One aspect of the invention is geared toward preparation and administration of electrically prepared substances. Electrically active prepared substances may be used for their medicinal qualities. The substances are typically prepared for use with the application of an electrical current applied to an electrolytic substance. The substance is then used as a medicament for injection or application to a recipient. The electrical signal changes a physical property of the fluid and provides medicinal qualities. The substance is then used as a medicament.
An electrical signal generator is generally used to prepare the substance for injection or application. Additional information may be found in co-pending application Ser. No. 09/289,409. The electrically prepared active substance is usually only effective for a limited period of time after the application of the electrical signal, therefore the electrical signal generator is generally located at the site of use.
One problem of locating the signal generator at the site of use, is maintaining the quality control of the drug or treatment administration. For example, the manufacturer of the signal generation hardware device may build the activator device and program it with certain signal generator electrical characteristics for preparing the substance. The manufacturer may also provide a fluid substance or drug for use in the manufacturer's activator machine. If either the electrical characteristics of the activator machine or the chemical composition of the activated substance is altered before or during preparation, it can change the treatment dosage and/or treatment properties of the active treatment substance. This can have undesired and unintended effects on the medication and patient.
Another problem that occurs is maintaining purity of the fluid prior to injection. Present techniques too easily permit contamination of the fluid. Thus a better technique is desired. This invention provides such a means.
Another problem that is encountered is that of lot expiration. This happens where the shelf life of the medication expires before the medication is all used up. Normally, the medication should be thrown away, or discarded or destroyed. However, it may happen in the course of normal use that expired medication is improperly or accidentally given to a recipient. This can cause reduced effectiveness, unstable or unknown dosage potency, improper treatment or even harm to the patient. It is desirable to prevent this from occurring. This invention provides such a means. Another problem is one that occurs in the distribution of the medicament. Often times regulations require that the lot or batch number of every vial produced be tracked and recorded throughout the distribution process. Each time the medicament changes hands between the manufacturer, the distributor, and the health care practitioner, the lot number is recorded. Then if a bad lot or batch is found, other users possessing the same lot or batch may be located and notified, and the defective lot or batch may recalled. This may be time consuming, and somewhat error prone. Thus it is desirable to provide a method that provides easy and economical administration, yet equal or better reliability. This invention provides such a means.
Another problem that occurs is improper adjustment of dials on the signal generator. For example, a medicament of formula “A” may require a 50 Khz signal be applied to it. The literature accompanying the medicament may specify a frequency of 50 Khz be used to prepare the medicament. When the operator begins preparation of the medicament, the operator may inadvertently adjust the signal generator to a frequency other than 50 Khz. The operator may for example inadvertently set the signal generator to a frequency of 55 Khz, or some other improper frequency. This can have very undesirable effects on medicament preparation. For example, excessive pressure may form in the vial. Thus a better technique is desired. This invention provides such a means.
The electrical signal generator may have an adjustable output waveform. It is often desirable that an adjustable waveform be used. Such adjustable waveforms allow the practitioner to provide a certain limited range of adjustments when preparing electrically prepared medications, so as to allow a variation in treatment modalities.
However, when adjustable signal waveforms are permitted by the user, there may exist the possibility of undesired consequences. For example, in the case of a sealed vial, if an improper dc bias current is used, the vial or seal may burst as the result of an electrolytic pressure build up in the vial.
One reason electrically prepared drugs have not found widespread use is because the preparation process causes unpredictable or unstable dosage strengths, and therefore erratic potency levels. This can cause erratic and inconsistent treatment results, reducing the credibility and practice of treatments. Another problem is setting the dials and controls of the signal generator so as to obtain proper results. If the settings are not properly matched to the fluid in use, or are bumped of moved improper results can occur. This can cause poor quality health care. Stable and predictable dosage potencies are desirable in order to provide quality treatments. This invention provides means whereby stable dosages of electrically prepared pharmaceuticals may be prepared, with more consistent, predictable results, and less chance of operator error. Another problem which may occur is if the correct fluid substance is not used with the proper signal generator waveform. For example, some fluids may be designed for use with a 45 Khz waveform, while others may use a 50 Khz waveform. A practitioner may posses some fluid designed for use with a 50 Khz square waveform, while certain signal generators may only produce a 45 Khz wave. The user may be tempted to use the improper settings, and not obtain the full and proper benefit of the fluid. This can cause undesired results. Thus it is desirable to provide a means whereby the user may be permitted to use a variety of different fluid treatments, without danger or risk of setting the incorrect waveform for each fluid. This invention provides such a means.
In one aspect of the invention, a vial is provided. In the case of electrically prepared medicaments the vial contains several advantageous and unique aspects. The vial
The vial may include a number code 8 or multiple number codes 9. The number code may include serialization, and authentication data. The number code may be placed on the side of the vial, or any convenient location. The number code may take any of many types of human or machine or electronically readable data formats, such as bar codes, alpha-numeric digits, eeprom memory devices, and the like.
In the preferred embodiment, the vial is round and configured so as to be processable by automatic bottling and filling equipment. In one aspect of the invention, the lower portion of the vial consists of a hollow cavity 10 in which electrodes 2 and 3 are positioned. The electrodes are recessed inside the hollow cavity, protecting the electrodes from damage, and providing a flush bottom surface that does not impeded movement of the vial on conveyorized machinery. Further, the vial may include a neck portion 11 to facilitate automated handling. A preparation machine 12 includes contacts 13 and 14 for making an electrical connection to electrodes 2 and 3, thereby permitting the passing of electrical current through the contents 15 of the vial. The hollow cavity 10 or other portion may include a keyed portion that facilitates alignment of the electrodes 2 and 3 with the contacts 13 and 14. The keyed portion may consist of a notch, flat spot, groove, or the like, preferably located on the lower portion of the vial.
Such a patient database may record for example the name of the patient, the type of medication given, the electrical parameters, such as frequency and current used to prepare the medication, the lot number, the operator identification, name of the physician, etc. The database provides an easy and convenient means of keeping track of treatment progress.
In use, the user obtains the vial though whatever distribution channel they prefer. The user may use multiple suppliers. When the user is ready to use the vial, the user places the vial into the holding chamber opening provided by the signal generator apparatus. A light beam shines on the bar coding, and a photo-detector detects the reflected light. The signal is amplified and the waveform is cleaned up to produce two digital states, 1 and 0, corresponding to reflective and non-reflective portions of the bar code. The machine is able to read the data associated with the vial. The machine reads the data, usually in digital format, and uses the data to configure the operating parameters of the signal generator of the machine. The data reading apparatus is in communication with the signal generating circuitry. The data reading step is thus interlocked with the signal application step, thereby preventing incorrect use of the system by inserting the wrong vial data.
Alternately, the data need not be on the vial at all. A small token device 22
To prevent defeating the system, the sensor 26 is preferably active while the vial electrodes 13 and 14 are in contact with the signal generator circuitry 24. The code sensor is preferably placed along side of the well portion that retains the vial. The sensor may work with the signal generator electrical circuitry to detect if the vial is removed from the machine after it has been read. If the vial is removed or replaced after the read scan verification process, the signal generator may turn off and give an error signal. The vial may then need to be re-scanned and re-verified again, thus preventing improper operation of the machine.
In one aspect of the invention, a sealed vial is used to hold the medicament. The seal is placed on the vial after the vial is filled in a sterile manner. The vial may be transported of stored with the seal and the electrodes intact. The vial has electrodes and wire connections built into the vial. Wires from a signal generator connect to the electrodes in the vial, and allow current to flow through the fluid substance without opening the vial.
One problem that occurs is the accidental or improper use of expired medicaments. Many medicaments must be used within a certain period of time, or they can lose their potency or become unstable. To this end, often times an expiration date is printed on the medicament. The user checks the expiration date before using the medication, and if the medicament is found expired, the medicament is discarded before use. Many times however, users may forget to check the expiration date before use. This can result in the accidental use of expired medicaments, which can reduce the effectiveness of the treatment for the patient, or cause undesirable effects. Other times the user may check the expiration code and find the medicament is expired. However, though the user knows the medicament is expired, the user may be tempted to use the medicament anyway, to possibly detrimental effects. Thus it is desirable to provide a way to reduce or eliminate the accidental or intentional use of expired medicaments.
In one aspect of the invention, data placed on the vial includes information as to the expiration date of the medicament in the vial. The expiration date is read from the vial when the vial is placed in the machine and the scanning circuitry activates. The data is then processed, and compared to reference date data in the machine. If the expiration date found in the data on the vial is found to be past the current date information in the machine, the machine circuitry terminates activation preparation of the fluid in the vial by turning off the signal generating portion of circuitry. Thus the chance of inadvertent or improper use of the fluid is greatly reduced.
Another problem that occurs is assuring proper preparation of the medicament. Different medicaments may require different electrical signals to be applied in order to properly prepare them. If a user applies an incorrect electrical signal, the medicament may be improperly prepared, and it may be difficult to find the error if a problem should occur. In one aspect of the invention, configuration data is included in the data on the vial. The data associated with the vial is transferred to the machine preparing the substance in the vial. The configuration data may be linked to data in a central server, or the configuration data may be directly applied to or with the vial. The configuration data on the vial is readable by sensors or data paths in communication with the signal-generating machine and vial data.
For example, in one novel aspect, the vial may contain a product code data value of “1”. A “1” may indicate that the vial contains 2 milliliters of a certain 1% NaCl solution, and that a frequency of 50 Khz at a voltage of 35 volts is to be applied to the vial for a period of 8 hours to properly prepare it. The signal generator machine reads the value of “1” from the vial, checks with the central server database and determines what the correct operating parameters are, and sets the output circuitry of the signal generator to produce an output voltage of 35 volts at 50 Khz. The medication is then prepared. The configuration or setup data is preferably transferred in digital format. Different encoding schemes for the data transfer may be used, such as ASCII, binary, or custom data formats, and still fall within the scope of the invention. The voltage and frequency or other configuration operating parameter values may be suggested settings that the machine user can change or override, or they may be fixed such that the user can not alter the values. Different vials with different fluid solutions may have different suggested operating parameter values, depending on what treatments are being performed. The signal-generating machine reads the vial data, and sets signal generator operating parameters accordingly. Thus the chance for operator error is greatly reduced.
When the vial is loaded into the machine, the scanner or reader on the machine reads the setup code on the vial. The voltage, current, frequency, or other parameters specified on the vial are loaded into the memory of the machine. The parameters may be specified directly, or they may be coded to match a look-up table in the machine that has all the parameters associated with a certain profile. The memory may be used by the signal generating mechanism to adjust the bias voltage, reference voltage, registers or machine cycle steps in a digital oscillator or other means so as to provide the desired output signal waveform to the vial. If a look-up table is used to supply the details of a certain set of parameters, then the look-up table may be updated occasionally with data from the server database, so as to allow changes in operating parameters after the machine is delivered to the field.
Normally, each batch of medication requires a lot number. The lot number serves to provide traceability in case the lot batch should later be found to be bad, and require recall. The manufacturer records the lot number of each and every vial or dose of medication that is prepared on the medication. The medication is then conventionally distributed through third parties to end users. Each time the medication changes hands, the lot number of each vial must be recorded. Thus the lot number may need to be recorded numerous times before reaching the end user. If the medication lot should later be found to be bad, the lot number of the bad batch may be determined. The manufacturer then contacts all parties to whom bad medication was delivered. Each of these parties then contacts all parties to whom bad medication is delivered, until each dose of bad medication is located and retrieved. This can be time consuming and error prone. Thus a better way is desired.
If an end user 43 should try to use medication 39 with an improper or unrecognized number code, or try to improperly re-use the same medication twice, preparation machine 44 may be configured to reject the medication. Likewise, if the medication is expired, or has had a recall or bad lot number, the preparation machine may reject the medication. If the medication is a conventional medication, the machine may issue a warning tone, flash lights, or otherwise inform the user that the medication should not be used. If the medication is an electrically prepared medication, the machine may halt or cancel the electrical preparation process before the medication becomes ready to use, thus preventing improper use of expired or bad medication. Thus the system eliminates the need to track lot numbers throughout the distribution process. This arrangement also provides greater business efficiency.
The system may also be used in the case of recalls. Recalls may occur if a lot of medication is found to be bad after it has been shipped to the end user. In this case, the end user may not even be aware that the lot being used is bad, defective, or being recalled. In this case, potential harm to the patient can occur from use of the bad substance. It is desirable to prevent this from happening. This system provides a means whereby the user may be protected against use of batches or lots of substance that are bad.
If a lot or batch of substance is found to be bad, a notation is placed in the server database that such batch is bad. The notation may be placed in the server database through manual or automated means. The notation remains in the database until such time as the end user may try to use the bad lot. When the user tries to use the bad lot, the user machinery reads the code data from the vial of substance. The user machine then contacts the server database maintained by the manufacturer or other party controlling use of the substance and obtains status information from the manufacturer database. The server database is generally off-site from the end user. The user machine makes contact with the server through telephone lines, the internet, wireless transmission, or other means. The server checks the server database and verifies that the serial number or other code supplied by the user machine is recognized as belonging to the vial provider, and that the verification code on the vial is the proper one associated with that serial number. The server may also check the server database to see if there is any expiration or bad lot warnings on the vial in question. If there is a bad lot warning, or other warning, the server may notify the user hardware that the vial is bad, and should not be used. The user machine will then halt processing on the vial, and the substance will not become electrically active. If the serial number and verification code match the data stored in the database, and there are no expiration or bad lot warnings, the server may issue an approval code to the user machine. The approval code functions as a command that allows the activation process on the user machine to begin. If the verification code is not found to be associated with the serial number in the database, the information provided from the vial may be considered to be improper. In this case, the server does not issue an approval code to the user machine, and the user machine does not turn on the electrical signal used to activate the substance in the vial.
Each user machine preferably has a unique identification or serial number associated with it. The identification number is logged in a central database at the time the machine is manufactured. Along with the identification number, various randomly generated approval codes may be stored in the memory of the user machine. These approval codes are also recorded in a database, and linked with the machine identification serial number.
The current is applied via generally an alternating current waveform from a signal generator. The current flow is measured by the machine with an amp sensing circuit while the vial is connected to the machine and the current is flowing. The amp sensing circuit measures the current flowing to the electrodes in the vial. There may be different size of types of vials to be used with the machine. Each vial size of type may contain different formulations of fluid substance, and may require different voltages or currents to be applied. The machine includes stored data tables relating to the proper amount of current that should flow for the vial size and fluid type in question.
In another aspect of the invention, the system uses tamper resistant authorization signals. When a vial or token is inserted in the machine, and the machine verifies that the token is authentic with the database, the host computer 37
An alternate rendition of
While the tamper resistant authorization code of the system may be used with machines for preparation of medicaments, such an authorization system may alternately be used on other applications as well, such a utility meters and subscription services. The machine may either form an electronic connection 48, or use a keypad or other means whereby the user manually enters authorization codes provided by the operator of the database.
The vial is preferably pre-filled under sterile conditions, and then transported to the site of use. Numerous advantages are obtained in this manner. Pre-filling the vial at the factory allows controlled filling conditions, which provides much better sterile integrity than can be obtained by sterilizing the fluid in the field. Automated equipment is available which allows the vial to be filled in a sterile manner with high reliably. The vial may then be electrically prepared in the field, without compromising the sterile seal until the time of use.
Thus the system provides for controlled and traceable delivery and preparation of electrically prepared medicaments, with reduced chance of operator error, and higher quality. While exemplary examples are shown, numerous variations may be made and still fall within the spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 10/102,498, filed on Mar. 21, 2002.
Number | Date | Country | |
---|---|---|---|
Parent | 10102498 | Mar 2002 | US |
Child | 11761247 | Jun 2007 | US |