Device for producing three-dimensional models

Information

  • Patent Grant
  • 9925721
  • Patent Number
    9,925,721
  • Date Filed
    Wednesday, November 19, 2014
    9 years ago
  • Date Issued
    Tuesday, March 27, 2018
    6 years ago
Abstract
The present invention relates to a device for manufacture of three-dimensional models by means of a 3D printing process, whereby the build material is deposited on a build platform in layers and the build platform is moveable in the Z-direction and one or several drive units and one or several guide elements is/are provided to move the build platform. In so doing, drive units and guiding elements are arranged in such a way that a movement of the drive units is decoupled from the movement of the guiding elements.
Description

The invention relates to a device for manufacturing three-dimensional models as expressed in the generic concept of patent claim 1.


A method for producing three-dimensional objects from computer data is described in the European patent specification EP 0 431 924 51. In this method, a particulate material is deposited in a thin layer onto a platform which, if needed, is surrounded by a chamber and then a binder material is selectively printed on the particulate material using a print head. The particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain, desired height of the object is achieved. A three-dimensional object is thereby produced from the printed and solidified areas.


The object produced from the solidified particulate material is embedded in loose particulate material as described above and such is subsequently removed therefrom. This is done, for example, using an extractor. This leaves the desired objects, from which the remaining powder is removed, e.g. by brushing.


Other powder-supported rapid prototyping processes work in a similar manner, for example, selective laser sintering or electron beam sintering, in which a loose particulate material is also deposited in layers and selectively solidified with the aid of a controlled physical radiation source.


All these methods are referred to collectively below as “three-dimensional printing methods” or “3D printing methods”.


A special feature during layer-building of the three-dimensional printing process consists of the vertical movement (Z direction) of the build platform. This proceeds in very small increments, namely according to the height of the particle layer, typically in the size range between 20 μm and 500 μm.


Maintenance of the exact increment during lowering of the build platform is critical for many building solidification mechanisms, however, the binding of the particle material must be assured not only in the horizontal plane, but also in the vertical direction. If the build platform lowers in a larger increment due to defective movement of the Z-axis, this may result in the current layer not being able to properly bond with the underlying layer. This results in the so-called delamination which, in turn, results in an unusable component.


The Z-movement of the build platform also affects the accuracy of the component. The total deviation of the actual movement from the target movement by means of the build platform proceeds linearly in relation to the component tolerance and is undesirable for this reason.


In addition, every other deviation of the actual from the target movement by means of the build platform is visibly manifest as defects in the component. These deviations include, for example, wobbling movements of the build platform as well as slipping in the horizontal plane.


Acting as loads on the build platform are the forces of its own weight as well as the weight increasing during the layer-building process due to the powder feedstock and binder, respectively, the model.


In addition, acting in opposition to every movement of the build platform in the build cylinder are frictional forces between the seal and the build platform and build cylinder wall. Such a seal is necessary so that the powder cannot run through the gap between the build platform and chamber wall and thereby lead to malfunctions that could result in blockages. These frictional forces of the seals contacting the chamber wall can be very large if an error occurs, such as during a blockage of the seal.


Not least of all are also the forces and torque moments generated by the drive itself, which directly affect the build platform.


Current solutions regarding guidance and movement of the build platform include a so-called Z axis that consists of one guiding element and one drive unit. The guiding element ensures minimal deviation of the actual movement from the target movement of the build platform in respects to all three solid angles and the two horizontal directional components. The drive unit defines the exact vertical position of the platform.


A build chamber is known from the prior art, for example from WO 01/96048 A1, that possesses a movable piston connected with a spindle by means of a coupling device that, in turn, can be driven by a motor.


A similar mechanism is also known, for example, from WO 2007/039450 and U.S. Pat. No. 5,387,380.


Normally, one or more linear guiding elements with ball-bearing equipped carriages are used. Ball-screw spindle drives with servo or stepping motors have been traditionally used for this purpose. This is known from the prior art, for example from EP 1 322 438 B1, whereby therein are described yet other drive mechanisms for vertical adjustment.


The rigidity of a guiding element to counter wobbling movements of the build platform relating to the X or V axes is determined by the length of one guide carriage or by the distance of multiple guide carriages on the guide rail. This distance must be appropriately taken into consideration in dealing with the overall length of the guiding element.


In the case of 3D printing systems, such a guiding element must not penetrate past the so-called build plane because other axes acting to move the print head are running here. The result of this is that the axis for guidance must either be placed external to the build plane or located entirely beneath this. In the first case, the torque moments that act upon the axis are increased by the additional leverage.


The torque rigidity of common guidance systems, such as recirculating ball-bearings on guide rails, is realised by means of the distance of the force deflection points in the guide rails, e.g. by the guide carriages. The result of this is that greater torque rigidity equates to a greater distance of the guide carriages. In the case of usage of a change system for job boxes, containing a build platform and an edge, the guiding element must be at least as long as the lift height of the build platform in the box plus the distance of the guide carriages.


If the guiding element is located below the build plane and if torque rigidity is greater, then the position of the build plane is displaced upward in the vertical direction. If the build plane can no longer be viewed due to the overall height of the arrangement, then this enormously restricts user-friendliness.


In another known embodiment, the guidance function is assumed by the chamber wall. In order to withstand any possible torque moments relating to the X and Y axes, multiple spindle drives that are distributed across the build platform are utilised. The disadvantage in this is that the guidance accuracy of the chamber wall is determined by the manufacturing accuracy. However, the manufacture of such chamber walls that corresponds to these requirements is time-, resource- and cost-intensive. To do so, the entire chamber wall must be mechanically machined in order to fulfil the required tolerances. Furthermore, the wall must also be sufficiently rigid to maintain such tolerances even during loads, for example, due to seal frictional forces.


According to the present invention, an object of the device relates to enabling the build platform to move in the Z axis direction with yet even greater exactitude.


This object is achieved by a device according to patent claim 1.


According to the present invention, a device for manufacturing three-dimensional models using a 3D printing process is described, whereby the build material is deposited in layers on a build platform. In order to execute the process, namely lowering of the build platform by respectively one particle layer, the build platform should be moveable in the Z-direction, and one or multiple drive units and one or multiple guiding elements are provided for said movement.


It should be reiterated that the Z direction in this context means the vertical direction relating to the build platform surface on which the component is built.


In so doing, drive units and guiding elements are arranged in such a way that a movement of the drive units is decoupled from the movement of the guiding element(s). According to the present invention, decoupled means that the undesirable movements and forces, which are incurred due to drive elements, are not transmitted to the guiding elements.


Said device now makes it possible for a 3D print method using layer building technology to execute the required lowering of the build platform in the Z direction and thereby fulfil the drive and guidance objects as per the given loads and with a high level of accuracy, even in the case of usage of build platforms of larger dimensions.


According to one preferred embodiment of the invention, at least two drive units are provided. Such a design can be advantageous in that drive motion can take place with the least amount of undesirable displacements.


Furthermore, it can be advantageous that a device according to the invention has drive units that include at least one spindle drive. Spindle drives have proven to be particularly advantageous due to their exhibiting relatively exact drive motion.


According to a further preferred embodiment of the invention, the drive elements are arranged beneath the build platform so that the vertical force can be deployed very well thereby reducing torque moments relating to the horizontal axes.


In one variant of the invention, the deployment of multiple spindles largely absorbs the torsional moments of the spindle nuts of the connected torsionally-stiff spindles via the build platform.


In order to optimally absorb the vertical forces, another preferred embodiment of the invention uses four spindles arranged at the corners of the build platform. Bessel points on the build platform diagonals are considered as optimal connection points in regards to flexing of the build platform. If an optimally stiff system is prerequisite, a combination of one individual spindle with one individual guiding element is also functionally sufficient.


It is also possible to absorb and thereby divert torsional moments by the torsionally stiff connection of multiple, but at least two, spindles via the drive plate.


In order to guarantee adequate positioning accuracy and repeatability in the vertical direction, preloaded spindle nuts are generally used. This hereby reduces axial as well as radial play. Such spindle drives tend to wobble during movement due to manufacturing and assembly tolerances. This means that the mounting point of the spindle moves relatively perpendicular to the spindle nut and transversely to the spindle axis. For example, the wobble pitch increases with the distance of the spindle nut to the spindle connection. In the case of inadequate guidance, the wobble pitch can lead to undesirable lateral movement of the build platform during the build process. Components generated by the machine and thereby affected by such defective movements manifest periodic stepping in the vertical direction.


A sufficiently stiff guidance system prevents displacement of the build platform. If wobble motion occurs, the spindle drive will elastically deform. This correspondingly leads to high forces and resulting torque moments on the guiding elements. The guiding element must be dimensioned very long in this case. However, this measure increases the construction height of the overall device, which is undesirable.


It is therefore necessary to reduce torque moments at the guiding elements. According to the invention, this occurs by decoupling the movement of the spindle drive from the movement of the build platform in the horizontal direction.


According to one preferred embodiment of the invention, the drive elements engage with the build platform via a so-called compensation platform.


If the machine is designed as a system with changeable chambers, it may make sense to switchably engage the build platform of the changeable chamber (job box floor) to a machine axis via an additional lifting platform.


For example, it is conceivable that the drive spindles are not directly supporting the build platform, but rather the compensation platform. This can move freely in the horizontal plane in contrast to the build platform. A switchable connection to the build platform is located on the lift platform above the compensation platform. The lift platform and compensation platform are connected with axial bearings in such a way that no play occurs in the vertical direction and no forces can be transmitted in the horizontal plane. The lift platform is connected with a frame via a guiding element that limits or completely eliminates horizontal displacements. The spindle nuts are mounted in a radially pivotable fashion on a base plate to which, in turn, the frame is attached. The spindle nuts are either driven individually or e.g. by means of a common belt.


In this arrangement, wobble movements of the individual spindles result in a joint movement of the compensation platform. This motion can neither be further transmitted to the lift platform nor to the build platform.


In a further embodiment, the spindles are attached in a torque-stiff but radially movable fashion to the lift platform. This type of bearing connection can be implemented by e.g. use of flexure hinges or plain friction bearings. The advantage of the previously described variants is the prevention of preloading stresses in the arrangement.


Due to the decoupling of guiding elements and drive units, the torsional moment of the spindles can no longer be transmitted to the guiding elements. In this regard it is advantageous if at least two spindles are deployed whose drive torque moments are mutually countered and supported.


For the purpose of more detailed explanation, the invention is described in further detail below on the basis of preferred embodiments with reference to the drawing.





In the drawing:



FIG. 1 A frontal view of the device according to one preferred embodiment of the invention;



FIG. 2 A spatial representation of the device according to one preferred embodiment of the invention;



FIG. 3 A cross-section view of the device according to another preferred embodiment of the invention; and



FIG. 4 An enlarged view of the cross-section of FIG. 3; and



FIG. 5 A cross-section view of the device according to yet another preferred embodiment of the invention;






FIG. 1 and FIG. 2 relate to the description of a preferred embodiment of the invention. In the displayed representation of the embodiment of the invention, the layer-wise building process of models takes place on the vertically positionable build platform (15).


Build platform (15) moves within a framework encompassing it on all sides. Together with the build platform (15), this framework comprises the changeable chamber (14) or job box.


The job box (14) is introduced in the 3D print machine via e.g. roller guides and secured in a defined position and locked against displacements in all directions. To construct three-dimensional models, the build platform (15) is moved in the Z axis direction (vertical machine axis). In so doing, the build platform (15) according to the displayed preferred embodiment of the invention statically engages with a lift platform (2) via a switchable clamping system (1) by means of which the clamping system (1) and the thereby connected job box floor, respectively, the build platform (15), can be moved vertically.


In the displayed embodiment, four drive spindles (3) are provided, which are connected with the lift platform (2) and vertically position this platform.


Moreover according to the displayed example, there is at least one guiding element (4) provided, which is connected to the lift platform (2) and accurately guides this lift platform (2) vertically, and respectively, absorbs horizontal forces.


In addition, the machine framework (7) bears the guide bearing (5) and a spindle drive system.


A spindle guide system according to the displayed preferred embodiment of the invention consists of four pivotable, bearing-equipped spindle nuts (6). In turn, all spindle nuts (6) are connected with a drive motor (9) via a drive belt (8).


In order to move the build platform (15), respectively move the lift platform (2) in the Z direction, the motor (9) drives all the spindles (3) at the same speed via the belt (8). In this manner, the smooth and evenly paced extension of the Z axis of the device is assured.


It can be seen in FIGS. 3 and 4 that according to the displayed preferred embodiment of the invention the lift platform (2) is subdivided into two plates, namely in a guidance plate (10) and a drive plate (13). The guidance plate (10) bears the clamping system (1) and is solidly connected with the guiding elements, which are herein displayed as guide rods (4).


The drive plate (13) bears the four drive spindles (3) in a torsionally inflexible manner. Furthermore, the drive plate (13) and the guidance plate (10) are connected to one another via a rolling-contact bearing. The rolling-contact bearing is hereby e.g. a combination of bearing disks (12) of axial needle roller bearings and a ball-bearing retainer (11) of axial groove ball bearings. This combination enables freedom of movement in the X and Y direction. In this manner, the system is positioned without any play in the Z direction.


On the underside of the platform is the drive plate (13), Through large holes, the guide rods (3) move without contact through the drive plate (13). The guide rods (3) are thereby connected with the drive plate (10).


Any distorting displacements occurring during operation are transmitted from drive spindles (3) to the drive plate (13). The movements are decoupled by bearing (11) and (12). The exact guidance of the build platform is achieved by the guidance plate (10), which horizontally connects to the housing via guide rods (3).


In FIG. 5, another design variant of the device according to the invention is shown.


A build platform (15) is arranged with slidably-mounted seals (16) running along the Z direction edge (not shown here).


According to the displayed preferred embodiment, the build platform (15) is connected to the guidance plate (10) via switchable connections (17). The guiding element (4) engages the guidance plate (10), which in turn guides the linear guiding elements (20) through the machine frame (7). Further, the guidance plate (10) is connected via compensation bearings (18) to the drive plate (13), which, in turn, engages with the drive spindles (3), which are driven by a spindle drive (19) enabling movement of the build platform (15).


DESIGNATION LIST






    • 1 Clamping system


    • 2 Lift platform


    • 3 Drive spindles


    • 4 Guiding element


    • 5 Guide bearing


    • 6 Spindle nut


    • 7 Machine frame


    • 8 Belt


    • 9 Motor


    • 10 Guidance plate


    • 11 Ball-bearing retainer


    • 12 Bearing


    • 13 Drive plate


    • 14 Job box/changeable chamber


    • 15 Building platform


    • 16 Seals


    • 17 Switchable connection


    • 18 Compensation bearings


    • 19 Spindle drive


    • 20 Linear guiding elements




Claims
  • 1. A method for 3D printing comprising the steps of: i) depositing a build layer including one or more build materials on a build platform, wherein the build materials includes a particulate material and the build layer has a height; ii) lowering the build platform; and iii) repeating steps i) and ii) to print a 3D object; wherein the step of lowering the build platform includes a step of vertically driving one or more Z-axis drive units connected to a horizontal drive component for moving the horizontal drive component in a vertical direction; wherein a horizontal guide component is supported by the horizontal drive component, positioned above the horizontal drive component, and is vertically displaced by the moving of the horizontal drive component; wherein the guide component is free to move horizontally relative to horizontal drive component; and wherein the build platform is the horizontal guide component or the build platform is supported by the horizontal guide component and connected to the horizontal guide component.
  • 2. The method of claim 1, wherein the vertical increment is generally equal to the height of the build layer.
  • 3. The method of claim 2, wherein the horizontal guide component is a guide plate, and the horizontal drive component is a drive plate.
  • 4. The method of claim 3, wherein the guide plate is connected to one or more guide elements that are capable of moving only in a generally vertical direction so that the guide plate does not move rotationally or axially in the horizontal plane.
  • 5. The method of claim 4, wherein the drive plate has one or more openings for the one or more guide elements, wherein the openings are sufficiently large to allow for horizontal movement of the drive plate without contacting the guide elements.
  • 6. The method of claim 5, wherein the one or more guide elements inhibits rotation of the build platform.
  • 7. The method of claim 6, wherein the one or more guide elements inhibit horizontal translational motion of the build platform.
  • 8. The method of claim 7, wherein the vertical increment is 20 μm to 500 μm.
  • 9. The method of claim 7, wherein the drive plate is moved by a plurality of the z-axis drive units.
  • 10. The method of claim 9, wherein the z-axis drive units are driven by a common motor.
  • 11. The method of claim 9, wherein each z-axis drive unit includes a drive spindle and a spindle nut.
  • 12. The method of claim 7, wherein the guide plate and the drive plate are connected by axial bearings so that substantially no play between the guide plate and the drive plate occurs in the vertical direction and substantially no horizontal forces can be transmitted between the guide plate and the drive plate.
  • 13. The method of claim 7, wherein the build platform is supported by the guide plate and connected to the guide plate.
  • 14. The method of claim 13, wherein the guide platform and the build platform are connected via a switchable clamping system.
  • 15. The method of claim 13, wherein during the build of the object, the guide plate and the build platform do not move relative to each other.
  • 16. The method of claim 7, wherein the z-axis drive units are mounted on a common frame.
  • 17. The method of claim 1, wherein the method includes moving the horizontal drive component relative to the horizontal guide component in a horizontal direction during the step of lowering the build platform.
  • 18. The method of claim 1, wherein the method includes moving the horizontal drive component relative to the horizontal guide component in a translational horizontal direction during the step of lowering the build platform.
  • 19. The method of claim 1, wherein the method includes rotating the horizontal drive component relative to the horizontal guide component in a horizontal direction during the step of lowering the build platform.
  • 20. The method of claim 1, wherein the horizontal guide component is a guide plate, and the horizontal drive component is a drive plate, the drive plate has one or more openings for the one or more guide elements, wherein the openings are sufficiently large to allow for horizontal movement of the drive plate without contacting the guide elements.
Priority Claims (1)
Number Date Country Kind
10 2010 006 939 Feb 2010 DE national
US Referenced Citations (319)
Number Name Date Kind
4575330 Hull Mar 1986 A
4665492 Masters May 1987 A
4752352 Feygin Jun 1988 A
4863538 Deckard Aug 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs et al. Apr 1993 A
5216616 Masters Jun 1993 A
5248456 Evans, Jr. et al. Aug 1993 A
5252264 Forderhase et al. Oct 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5431967 Manthiram et al. Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5555176 Menhennett et al. Sep 1996 A
5573055 Melling et al. Nov 1996 A
5573721 Gillette Nov 1996 A
5582231 Siak et al. Dec 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jun 1997 A
5658412 Retallick et al. Aug 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6037389 Archibald et al. Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6116517 Heinzl et al. Aug 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer et al. Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6316060 Elvidge et al. Dec 2001 B1
6322728 Brodkin et al. Dec 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt et al. Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6436334 Hattori et al. Aug 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6467525 Herreid et al. Oct 2002 B2
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6552130 Makino et al. Apr 2003 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood et al. Mar 2004 B1
6722872 Swanson Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer et al. Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Corp Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7531117 Ederer et al. May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer et al. Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer et al. Jun 2010 B2
7748971 Hochsmann et al. Jul 2010 B2
7767130 Elsner et al. Aug 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer et al. Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Noel et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins et al. Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann et al. Jan 2005 A1
20050093194 Christopher et al. May 2005 A1
20050167872 Tsubaki et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060175346 Ederer et al. Aug 2006 A1
20060208388 Bredt et al. Sep 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20070045891 Martinoni Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070245950 Teulet Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner et al. Sep 2008 A1
20080237933 Hochmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100207288 Enrico Sep 2010 A1
20100243123 Voxeljet Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang et al. Dec 2010 A1
20110059247 Kuzusako et al. Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann et al. Apr 2012 A1
20120113439 Ederer et al. May 2012 A1
20120126457 Abe et al. May 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20130000549 Hartmann Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140048980 Crump et al. Feb 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Ederer Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Ederer et al. Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer et al. Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grassegger et al. Apr 2016 A1
20160263828 Ederer et al. Sep 2016 A1
20160303762 Gunther Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
Foreign Referenced Citations (68)
Number Date Country
720255 May 2000 AU
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4300478 Aug 1994 DE
4 325 573 Feb 1995 DE
29506204 Jun 1995 DE
4440397 Sep 1995 DE
19525307 Jan 1997 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19853834 May 2000 DE
100 53 741 Feb 2002 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
10 2006 040 305 Mar 2007 DE
102006029298 Dec 2007 DE
102007040755 Mar 2009 DE
10 2007 050953 Apr 2009 DE
102007047326 Apr 2009 DE
102011053205 Mar 2013 DE
102015006363 Dec 2016 DE
102015008 860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
0361847 Apr 1990 EP
1415792 May 2004 EP
1381504 Aug 2007 EP
2856614 Dec 2004 FR
S62275734 Nov 1987 JP
2003136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
0140866 Jun 2001 WO
2001078969 Oct 2001 WO
0196048 Dec 2001 WO
02064353 Aug 2002 WO
02064354 Aug 2002 WO
03016030 Feb 2003 WO
03106067 Feb 2003 WO
2004010907 Feb 2004 WO
2004-108398 Dec 2004 WO
2005082603 Sep 2005 WO
2005133219 Dec 2005 WO
2007039450 Apr 2007 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011063786 Jun 2011 WO
2011095157 Aug 2011 WO
2013075696 May 2013 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
2016146095 Sep 2016 WO
Non-Patent Literature Citations (17)
Entry
US 4,937,420, 06/1990, Deckard (withdrawn)
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio-and Structural Materials,” SFF Symposium, Austin, TX, 1994.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 131-136, Mar. 25-28, 1990.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143 & 151, Jan. 1990.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, pp. 2-15, Jun. 1987.
Gephart, Rapid Prototyping, pp. 118-119, 1996.
Marcus et al., Solid Freeform Fabrication Proceedings, Nov. 1993.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-33.
Related Application, U.S. Appl. No. 12/681,957, filed Apr. 7, 2010, published as 2010/0212584.
International Search Report, Application No. PCT/DE2011/000092, dated Jul. 7, 2011, Published as WO2011/095157.
International Preliminary Report on Patentability, Application No. PCT/DE2011/000092, dated Aug. 7, 2012.
European Office Acton dated Jul. 17, 2013; Application No. 11718245.1.
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012.
EOS Operating Manual for Laser Sintering Machine with Brief Summary, Feb. 22, 2005.
Related Publications (1)
Number Date Country
20160114533 A1 Apr 2016 US
Continuations (1)
Number Date Country
Parent 13576529 US
Child 14547676 US