This invention relates generally to the field of protecting and nurturing seedlings. More particularly, it concerns protecting and nurturing seedlings that are container-grown and sometimes planted intact with the protective device.
Many plants including ornamental, reforestation tree seedlings and vegetables are grown in greenhouse nurseries. They are typically grown in containers made from an assortment of materials, sizes, and shapes. These containers usually contain cavities which are pre-formed and shaped to sizes that best fit root and shoot growth for various species. These cavities are filled with soil material or medium such as but not confined to soil, soil amendments, peat, and fertilizers. Once seeded in these containers, the plant grows to the desired size and shape, is extracted manually or by machine, packaged, and shipped to customers. Alternatively, the container-grown plant is packaged and shipped to customers inside the container in which they were grown.
Of particular interest are container-grown and unprotected tree seedlings. Often during extraction approximately six to twelve of these seedlings, depending on size, are stacked together on the packing line, wrapped together and in contact with one another within a wrap-around single poly liner sheet, boxed or bagged, and sent to a freezer facility so that the product can be stored over a long period of time safely before actual planting. During this process, these bundled trees and/or root balls typically freeze together into one large ice lump due to moisture remaining in the root system during the growing cycle. Once the planting time arrives, these frozen bundles must be thawed at the freezer site or planting site in order to separate each individual seedling for planting.
Thawing takes time and adds expense. Thawing can cause desiccation to exposed tender root systems as typically bundles thaw from the outside inward. The outer root systems are thawed long before the inside of the bundles and subjected to drying and disease of the fine root tips needed for growth. Under-thawing requires planters in the field forcibly to break apart partially frozen bundles, thereby to separate or individuate the container-grown but unprotected seedlings. The resulting damage decreases nutrients available to the new plant, structure and strength of the root medium around the initial root growth and around the root tips themselves, as those of skill in the art know. Newly planted seedlings need all the vitality possible for survival.
A container-grown seedling protective device includes a flexible expanse including an array of plural pods, each pod in the array of pods configured for holding a container-grown seedling root ball therein. A container-grown seedling protective device includes an array of plural generally cylindrical pockets, each of the plural pockets including a closed bottom and an open top, and each of the plural pockets configured for holding a single seedling therein separate from one or more adjacent seedling root balls held by adjacent pockets, each of the plural pockets being detachably connected to an adjacent one of the plural pockets by a frangible web extending therebetween, the structure of each frangible web permitting the array of plural pockets when holding plural container-grown seedling root balls therein to be configured in a manipulable size and shape that facilitates plural-container-grown seedling handling and singular container-grown seedling dispensing from the array. A method for manufacturing a protective device for container-grown seedlings includes laying down a contiguous length of a first laminar film; positioning a plurality of spaced rods of defined length atop the length of first film; laying down a contiguous length of a second laminar film atop the first film and the spaced rods; adhering the first and the second films to form a seam along a congruent edge thereof beyond the reach of the rods and along plural spaced apart seams between the rods, the plural spaced apart seams extending from the congruent edge like teeth of a comb, thereby to form a contiguous laminate; and removing the rods from between the seams to form individuated substantially sealed plural pockets defined by the seams, the pockets being configured to receive therein root balls of container-grown seedlings.
Detail A shows a fragmentary, bottom edgewise view of the protective device of
The novel protective device consists of individually formed pods on a sectional or continuous sheet in a one-dimensional (1D) or two-dimensional (2D) array. If manufactured as a continuous sheet, whether in a 1D or 2D array, the protective device can be perforated (or otherwise biased to tear or separate) along separating lines that extend longitudinally between adjacent ones of the formed pods, allowing separation of one or more pods at predetermined intervals to meet packaging needs. Indeed, perforations can be provided between each protection device and an adjacent one, thereby permitting individual dispensing and handling of containerized-seedling containing pods. Dimension and size of the sheet and pods can change to accommodate different size root systems and packaging needs and may be slightly oversized and/or tapered to ease target and thus ease insertion while gripping the seedling within the pods.
The pods on the protective device are open at the top and sealed on the three other sides allowing seedling root systems to be inserted into and removed from the protective device easily and quickly, whether frozen or unfrozen (i.e. at least partially thawed). This allows a choice for planting either frozen or thawed in the field. If the seedling is planted frozen the seedling can be removed individually from the protective device and thawing can then take place naturally in the ground. If planted unfrozen, then damage to the growing medium and resulting loss of nutrients can be avoided. This will give the newly planted seedling a better chance of survival. Moreover, the invented protective device can be planted with the seedling therein, whether frozen or unfrozen.
The sheet and pods themselves are constructed of materials that are strong enough to hold the inserted root system while packing, to permit freezing without the pod material sticking to the root system, and thus the sheet and pods can be used and/or disposed of safely.
Pods 10c are generally cylindrical in shape, and can be in accordance with one embodiment of the invention approximately circular in cross section. Alternatively, within the spirit and scope of the invention, pods 10c can be octagonal, hexagonal, square, triangular, or any other suitable cross sectional shape, whether regular polyhedral or not. Alternatively, within the spirit and scope of the invention, pods 10c can have a generally cylindrical upper portion, e.g. half, smoothly joined, e.g. at approximately half of the overall height of the pods with a generally frusto-conical lower portion, e.g. half. Thus, any suitable shape for receiving and protecting a seedling is contemplated as being within the spirit and scope of the invention.
Typically, a container-grown seedling's root ball is approximately 4-6″ in height, and the seedling overall including the root ball is between approximately 6″ and 16″ in height. Thus, in accordance with one embodiment of the invention, the pods 10c are between approximately 6″ and 7″ in height, leaving between an approximately 0.5″ and 2″ high protective rim extending above the upper surface of a typical seedling root ball. (Refer briefly to
One suitable material for protective device 10 in its first 1D plural-pod array embodiment shown in
Other suitable materials are contemplated as being within the spirit and scope of the invention. For example, paper stock can be used, as can cloth, e.g. burlap, muslin or other lightweight fabric, whether woven or unwoven, e.g. extruded or pressed as from a slurry or pulp. The material from which protective device 10 is made can be infused with fertilizer, vitamins, nutrients, etc. to enhance the nurturing of the seedling that is planted while still inside its pod 10c.
Thus, any combination of materials, sizes, pod shapes or numbers, and 1D or 2D pod array configurations within a container-grown seedling protective device is contemplated as being within the spirit and scope of the invention. Some such alternatives are described and illustrated herein, but such are not intended to limit the scope of the invention.
Those of skill in the art will appreciate that, although not shown in the drawings in the interest of clarity, nevertheless one or more pods 10c can be infused or impregnated with fertilizer, nutrient, moisture, or other nutritional additives to encourage early growth of one or more seedlings especially when planted intact within the one or more corresponding pods. Such can be accomplished at any appropriate stage of manufacturing the pods or the protection device arraying the pods therein, and the recipe for such additive can vary depending upon variety and/or geography of the seedling and planting site. For example, with burlap material to form the pods, the burlap when it is in individual sheet form can be conveyed contiguously through a nutritional additive bath concentration and then dried as by heating to trap the entrained additive particulate within the woven burlap fabric. Those of skill in the art will appreciate that alternative materials can be similarly or differently infused with nutritional additive particulate.
Those of skill in the art also will appreciate that seedlings can be planted intact with the pods arrayed within the protective device, within the spirit and scope of the invention. This is facilitated in accordance with one embodiment of the invention by providing perforated tear lines, or frangible webs, between each individual pod and an pod adjacent thereto. The fine root hairs readily penetrate the material wall, especially when aided by the perforations, and early obtain nutrients from the soil. In the case the material the pods are made from itself is quickly biodegradable or at least compost-able, as described above, there is no environmental harm to planting the seedlings intact within their respective and separately and easily dispensable pods, in accordance with the invention.
Those of skill also will appreciate however that, in accordance with another embodiment of the invention, only selected ones of webs extending between adjacent pods might be perforated or rendered frangible, thereby preventing individual dispensing of pods while enabling group dispensing of a given number of pods at a time, from which group of pods individual seedling root balls can be removed and individually planted.
As those of skill in the art know, there are several methods of manufacturing the protective device 10 not limited to the method shown. By this method, forming rods 11 are positioned over sheet 10a and a second flat sheet 10b overlays the rods. (See
Those of skill in the art will appreciate that with poly-nylon sheets, the inner poly surfaces face one another but the outer nylon surfaces oppose one another. This provides adherence of the two sheets together along the intended seams by the application of heat and pressure, but it does not result in adherence of the outside surfaces together. Refer briefly to
In accordance with one embodiment of the invention shown in
Once the rods are removed, the pods generally retain their shape by virtue of their structural and material makeup. More importantly, the size of each of forming rods 11 is selected to match the size of a seedling root system to be inserted into pods 10c formed thereby, and those of skill in the art will appreciated that the size can be selected to accommodate seedling root systems of varying sizes.
Those of skill in the art will appreciate that such a conveniently dimensioned and configured bundle can be easily carried by hand, e.g. under one arm or slung on a rope near the waist or slung over the shoulder on a strap or strung or hooked with a tether onto a belt or belt loop, etc. Those of skill in the art also will appreciate that those embodiments of the invention illustrated in
Those of skill in the art also will appreciate that protective device in any suitable form as described and illustrated herein alternatively can be simply left in its normal flat expanse form for further deployment including storing, transporting and dispensing therefrom. For example, one or more of the illustrated planar array embodiments of
Detail A shows the lay-up of the laminar sheets of the embodiment of device 10 shown in
The die stamp/press step suggested by dashed lines showing the folded-double outer laminar sheet folded flat against the singular inner laminar sheet. When the heat/pressure application is complete, and when the die stamp or other suitable tool (not shown) is removed, the folded-double (inner surfaces-adhered because poly is relatively heat and pressure sensitive) extent of the outer laminar sheet pops out (outer surfaces un-adhered because nylon is relatively heat and pressure insensitive) at generally a right angle to the plane of the inner laminar sheet, as shown in solid lines. Thus, the second or outer laminar sheet 10b is gathered and effectively pleated along its bottom edge to form generally cylindrical pockets between the un-gathered, un-pleated upper region of second laminar sheet 10b and flat inner laminar sheet 10a. This can best be seen by reference to
It will be understood that the present invention is not limited to the method or detail of construction, fabrication, material, application or use described and illustrated herein. Indeed, any suitable variation of fabrication, use, or application is contemplated as an alternative embodiment, and thus is within the spirit and scope, of the invention.
From the foregoing, those of skill in the art will appreciate that several advantages of the present invention include the following.
The present invention provides for the protected storage, transportation, handling, dispensing, and planting of container-grown seedlings from a roll thereof, as well as a convenient method of manufacturing a protective device for such seedlings. The protective device's plural but separable pockets or pods separate and separately protect each individual seedling placed therein in the form of a flexible expanse that can be flat during manufacture and loading but that can be in a suitable, manipulable configuration when used for seedling transportation, storage, handling, dispensing, and even planting. The device can be infused with fertilizer or other nutrients, so that an intact seedling-within-a-pocket can be planted as it is dispensed from the roll. The individual pods also can be perforated in at least a bottom region thereof to enable easier migration of moisture and nutrients from the soil in the case of such intact plantings. Each pocket or pod sealingly separates a corresponding seedling from every other so that, when stored, transported, or planted while still frozen, nevertheless the individual seedlings are easily separated rather than forming a solid or semi-solid, difficult-to-separate-without-seedling-damage, frozen mass.
It is further intended that any other embodiments of the present invention that result from any changes in application or method of use or operation, method of manufacture, shape, size, or material which are not specified within the detailed written description or illustrations contained herein yet are considered apparent or obvious to one skilled in the art are within the scope of the present invention.
Accordingly, while the present invention has been shown and described with reference to the foregoing embodiments of the invented apparatus, it will be apparent to those skilled in the art that other changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined in the appended claims.
The present application claims priority to U.S. patent application Ser. No. 11/171,596 entitled PLANT SEEDLING POT AND METHOD FOR ITS MANUFACTURE, filed 29 Jun. 2005 and published as Publication No. US 2007/0000171 A1, the disclosure of which is incorporated herein in its entirety by this reference.