A bathtub generally has a drain system positioned in a bottom of the bathtub that allows for selective opening and closing so that the bathtub can retain water. Additionally, an overflow system is provided so that once the water within the bathtub reaches a predetermined height the water can drain from the bathtub and reduce or prevent water from overflowing the bathtub and flowing onto the floor. The overflow system interconnects the bathtub's overflow port to a wastewater system and includes an opening that enables water to flow from the bathtub to the wastewater system. In some known overflow systems exit flow from the opening can be reduced or completely restricted because air pressure within the overflow system restricts or even prevents the water from entering the opening.
In one aspect, the technology relates to an overflow assembly for a bathtub including: an elbow including a first threaded section; a retainer nut including a second corresponding threaded section, wherein the retainer nut is configured to threadably mount onto the elbow; and an overflow cover including at least one overflow opening and at least one vent opening defined therein, wherein the overflow cover is configured to engage with the retainer nut and substantially cover the first threaded section and the retainer nut.
In an example, the at least one vent opening is configured to equalize air pressure inside the elbow with air pressure outside of the overflow assembly and increase a flow rate of a liquid through the at least one overflow opening. In another example, the overflow cover includes: a face; and an exterior wall extending from the face, wherein the exterior wall is sized and shaped to receive the retainer nut, and wherein an end of the exterior wall defines a mounting surface that is positionable at least partially against the bathtub when the overflow cover is engaged with the retainer nut. In yet another example, the at least one vent opening is at least partially defined by the exterior wall. In still another example, the at least one vent opening is only partially defined by the exterior wall. In an example, the at least one vent opening is completely defined by the exterior wall. In another example, the retainer nut further includes a plurality of circumferentially spaced and radially extending lugs, wherein the exterior wall has a projection configured to frictionally engage with the plurality of lugs, and wherein the at least one vent opening has a length greater than a length of a lug of the plurality of lugs. In yet another example, the overflow cover includes an interior surface having at least one surface feature configured to increase a flow rate of a liquid through the overflow assembly.
In another aspect, the technology relates to an overflow assembly for a bathtub including: an elbow; a retainer nut; a bracket configured to secure the retainer nut to the elbow; and an overflow cover including at least one overflow opening and at least one vent opening defined therein, wherein the overflow cover is configured to engage with the retainer nut and substantially cover the bracket and the retainer nut.
In another aspect, the technology relates to an overflow cover including: a face; and an exterior wall extending from the face, wherein the exterior wall is sized and shaped to receive and engage a retainer nut of an overflow assembly, wherein an end of the exterior wall defines a mounting surface that is configured to be positioned against a bathtub when the overflow cover is mounted over an overflow port, and wherein at least one overflow opening and at least one vent opening are at least partially defined by the exterior wall.
In an example, the at least one vent opening is only partially defined by the exterior wall. In another example, the exterior wall includes an interior surface having a projection extending therefrom, the projection is offset from the mounting surface and configured to frictionally engage a retainer nut, and wherein the at least one vent opening extends from the mounting surface to a depth that is less than or equal to the offset distance. In yet another example, the at least one vent opening is completely defined by the exterior wall. In still another example, the exterior wall includes an interior surface having a projection extending therefrom, the projection is offset a distance from the mounting surface and configured to frictionally engage a retainer nut, and wherein the at least one vent opening is positioned between the projection and the face. In an example, the face includes an interior surface having at least one surface feature configured to increase a flow rate of a liquid through the overflow assembly. In another example, the at least one surface feature includes at least one fin extending from the interior surface. In yet another example, the at least one surface features includes a textured surface. In still another example, the exterior wall defines a length, and wherein the at least one overflow opening is offset along the length from the at least one vent opening. In an example, the at least one overflow opening is positioned below a horizontal centerline of the overflow cover, and wherein the at least one vent opening is positioned above the horizontal centerline. In another example, the at least one vent opening is substantially disposed opposite the at least one overflow opening.
These and various other features as well as advantages which characterize the overflow assembly and overflow cover described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing introduction and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The following drawing figures, which form a part of this application, are illustrative of described technology and are not meant to limit the scope of the invention as claimed in any manner, which scope shall be based on the claims appended hereto.
Before the overflow assembly and overflow cover that are the subject of this disclosure are described, it is to be understood that this disclosure is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting. It must be noted that, as used in this specification, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
This disclosure describes overflow covers for use in an overflow assembly of a bathtub. The overflow covers enable a flow rate of water exiting from the bathtub to be increased and to reduce flow rate restriction due to the buildup of air pressure within the overflow assembly. The overflow covers include an overflow opening and a vent opening so that the air pressure from inside the overflow assembly is allowed to equalize with the air pressure outside of the overflow assembly without having to escape from the overflow opening. Additionally, the overflow cover may include an interior surface feature that further increases the flow rate of the water exiting from the bathtub.
In addition to the drain system 116, an overflow system 128 also couples the bathtub 106 in flow communication with the plumbing system 118 to enable water to be drained from the bathtub 106 at a second location within the bathtub and channeled out of the bathroom structure 100. The overflow system 128 may be positioned within a wall opening 130 defined in the wall 104 and include an overflow pipe 132 that is attached at a first end, via an overflow elbow 134, to the end wall 112 at an overflow port 136. An overflow assembly 138 is coupled to the first end of the overflow elbow 134 and provides a covering for the overflow port 136. From the bathtub 106, the overflow pipe 132 extends to the T-connector 126 which couples the overflow pipe 132 to the plumbing system 118. The overflow pipe 132 can be either a rigid pipe member, with or without fittings, or a flexible pipe member. A vent pipe 140 runs within the wall 104 and is open to exterior ambient air at one end to provide venting of the plumbing system 118. Additionally, one or more water supply lines 144 run within the wall 104 and are in flow communication with a faucet 146 positioned proximate the bathtub 106 and/or a shower head (not shown) positioned above the bathtub 106. A control assembly 148 mounted on the wall 104 includes one or more control valves 150 that are used to control the flow and/or temperature of the water from the valves 150 to the faucet 146 and/or shower head.
In operation, a flow of water, for example, from the faucet 146, may be used to fill the bathtub 106. Water flow out of the bathtub 106 may be impeded for a number of reasons. For example, the tub closure assembly 124 may be closed to prevent water from draining out of the bathtub 106 through the drain system 116. Also, at times the drain elbow 120 may be clogged, preventing water from draining out of the bathtub 106. Regardless, to reduce or eliminate overflow from the bathtub 106, the overflow system 128 is used to enable the water to flow out of the open basin 114 and into the plumbing system 118 once the water reaches the installation height of the overflow assembly 138. The exit flow rate of the overflow system 128 in relation to the inlet flow rate from the faucet 146 determines how long it takes to overflow the bathtub 106. In examples, the overflow system 128 may be sized and shaped to have an exit flow rate less than, equal to, or greater than the inlet flow from the faucet 146.
When the water reaches the level of the overflow assembly and/or submerges the overflow assembly, the upstream water within the bathtub may cavitate and/or form a funnel flow such that the air pressure from inside the overflow assembly is allowed to equalize with the air pressure outside of the overflow assembly and allow the exit flow from the bathtub through at least one overflow opening 180 (shown in
Accordingly, the overflow assembly 138 includes at least one vent opening 182 (shown in
The overflow assembly 138 also includes the seal 152 which can be formed out of a foam or rubber compound. The seal 152 is positioned between the radial flange 166 of the elbow 134 and the outside of the bathtub end wall (depicted schematically at line L) and is flexible to facilitate alignment and securement of the overflow assembly 138. The retainer nut 154 includes a threaded inner surface 170 that corresponds to and is compatible with the threaded outer surface 160 of the elbow 134 so that the retainer nut 154 may threadably mount onto the elbow 134. A plurality of circumferentially spaced and radially extending lugs 172 extend from an outer surface 174 of the retainer nut 154. Each lug 172 has a circumferential length 176 and is separated from one another by a gap 178. When the retainer nut 154 engages the overflow elbow 134, the bathtub wall and the seal 152 are compressed between the radial flange 166 and the retainer nut 154 so as to secure the overflow assembly 138 within the overflow port. In alternative examples, the retainer nut 154 may be any other type of fastener, for example, a slip nut that enables the overflow assembly 138 to be secured within the bathtub as described herein.
The overflow cover 156 is configured to selectively engage with the retainer nut 154 and conceal the inlet end 158 of the elbow 134 and the retainer nut 154 such that a finish is provided with no visible fastening hardware. The overflow cover 156 includes at least one overflow opening 180 and at least one vent opening 182 at least partially defined therein. The overflow opening 180 enables water to flow into the overflow elbow 134 from the bathtub. The vent opening 182 enables the air pressure inside the elbow 134 to equalize with the air pressure outside of the overflow assembly 138 so that the flow rate of water through the overflow opening 180 is increased, thereby reducing water overflowing the bathtub and onto the floor. The overflow cover 156 is described further below in reference to
The overflow cover 156 defines an interior chamber 184 that is sized and shaped so a first channel 186 may be defined between the elbow 134 and the overflow cover 156. The first channel 186 extends from the overflow opening 180, which is positioned at the bottom of the cover 156 when it is engaged with the retainer nut 154, to the inlet end 158 so that water may flow (illustrated with arrow 188) from the bathtub 106 and into the overflow assembly 138 thereby reducing or eliminating bathtub overflow. Additionally, the interior chamber 184 of the overflow cover 156 is sized and shaped so a second channel 190 may be defined between the elbow 134 and the overflow cover 156. The second channel 190 extends from the vent opening 182, which is positioned at the top of the cover 156 when it is engaged with the retainer nut 154, to the inlet end 158 so that air may flow (illustrated with arrow 192) out of the overflow assembly 138. As such, during water inflow 188, the air pressure from inside the overflow system 128 is allowed to equalize with the air pressure outside of the overflow system 128, thereby increasing the exit flow rate of the water through the overflow opening 180.
In the example, the overflow cover 156 has at least one recess 194 defined therein so that the vent opening 182 is formed between the bathtub 106 and the overflow cover 156 when the overflow cover 156 is engaged with the retainer nut 154. The recess 194 has a depth 196 that is less than a thickness 198 of the retainer nut 154 such that at least one lug 172 of the retainer nut 154 is positioned within the vent opening 182. However, the recess 194 has a circumferential length 217 (shown in
The second end 204 is defined at the end of the exterior wall 208. At the second end 204 the exterior wall 208 open and is sized and shaped to receive the retainer nut as described above. A perimeter 210 of the exterior wall 208 defines a mounting surface 212 that is positionable at least partially against the bathtub when the overflow cover 156 engages with the retainer nut. In some embodiments, the body 200 may be formed as any other shape as required or desired such as square, rectangular, triangular, and cowbell-shaped. In other embodiments, the face 208 may extend radially outward from the exterior wall 206 such that a lip is formed at the first end 202.
The at least one overflow opening 180 is completely defined by the exterior wall 206 between the first end 202 and the second end 204. In the example, the overflow opening 180 is a single opening positioned at the bottom of the overflow cover 156 so that as the water rises within the bathtub, the overflow opening 180 enables the water to exit out of the bathtub and reduce overflowing the bathtub. The overflow cover 156 may be defined by a horizontal centerline 211 that substantially divides the body 200 between an upper half and a lower half of the body in its intended installation position. Although
In the example, the at least one vent opening 182 is at least partially defined by the exterior wall 206. For example, the at least one vent opening is only partially defined by the exterior wall 206, such as by the recess 194 that is defined at the second end 204. The recess 194 is formed on the mounting surface 212 and extends from the second end 204 towards the first end 202 within the exterior wall 206 and with a substantially arcuate shape extending for a circumferential length 217 around the perimeter 210. The recess 194 is positioned adjacent to the bathtub when in the intended installation position which forms the other boundary of the vent opening 182 as described above. In examples, the vent opening 182 is a single opening that may be positioned above the horizontal centerline 211 and centered about the vertical centerline 213 at the top of the overflow cover 156 so that air pressure may equalize and increase the flow of water through the overflow opening 180. In this example, the vent opening position may be referred to as a 12 o'clock position, and disposed opposite the overflow opening 180. In other examples, the vent opening 182 may be positioned within the body 200 anywhere above the overflow opening 180 in its intended installation position. In yet other examples, the vent opening 182 may be positioned at any location above the horizontal centerline 211 and may be offset from the vertical centerline 213. In examples, the vent opening position may be above the horizontal centerline 211 and between a 9 o'clock position and a 3 o'clock position. In still other examples, in its intended installation position, the vent opening 182 may be positioned above a three-quarter horizontal line 215 (defined as a line parallel to the horizontal centerline 211 and positioned three quarters of the distance between the top-most surface on the body 200 and the horizontal centerline 211), or above a half horizontal line 219 (defined as a line parallel to the horizontal centerline 211 and positioned three quarters of the distance between the top-most surface on the body 200 and the horizontal centerline 211), or above a one-quarter horizontal line 221 (defined as a line parallel to the horizontal centerline 211 and positioned one quarter of the distance between the top-most surface on the body 200 and the horizontal centerline 211). In further examples, the vent opening 182 may include a plurality of discrete openings and as shown in
The exterior wall 206 includes an interior surface 214 that partially defines the interior chamber 184 of the body 200. The interior surface 214 has a projection 216 extending inwards within the interior chamber 184 and around the perimeter 210 of the second end 204. The projection 216 is offset 218 from the mounting surface 212 and is configured to frictionally engage with the lugs on the retainer nut so that the overflow cover 156 may be removably secured to the overflow assembly. In the example, the vent opening 182 extends from the mounting surface 212 to the depth 196 that is less than or equal to the offset distance 218. In other examples, the vent opening 182 may extend from the mounting surface 212 towards the face 208 and past the projection 216. Additionally, the exterior wall 206 may extend for a length 219 from the face 208. In the example, the overflow opening 180 is offset 220 along the length 219 from the vent opening 182. In alternative examples, the overflow opening 180 may be inline along the length 219 with the vent opening 182.
The face 208 includes an interior surface 222 that partially defines the interior chamber 184 of the body 200. The interior surface 222 forms a wall of the first channel 186 and the second channel 190 (both shown in
The materials utilized in the manufacture of the overflow assembly and overflow covers described herein may be those typically utilized for plumbing and trim kits, e.g., brass, chrome, zinc, steel, aluminum, stainless steel, copper, etc. Molded plastics, such as acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), flexible PVC, polyethylene, etc., may be utilized for various components as well. Material selection for most of the components may be based on the proposed use and desired finish of the overflow assembly and overflow covers.
It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described are possible. While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope contemplated by the present disclosure.
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/374,089, filed on Aug. 12, 2016, under 35 U.S.C. §119(e), the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62374089 | Aug 2016 | US |