1. Field of the Invention
The disclosed technology relates to image stabilization of handheld digital cameras, and especially to a device providing image stabilization by applying control signals on actuators attached to a flexible lens body, wherein squeezing of the flexible lens body by the actuators provides a shift in the direction of the optical axis through the lens body in accordance with the control signals that are counteracting the effects of unintended movements or vibrations of the handheld camera.
2. Description of the Related Art
Trembling of the hand, vibrations in the ground or in a floor of a building, or other similar small rapid movements from or through a person or a camera stand, holding a camera, such as a still photography camera or a video camera, are usually unintended movements causing blurring of the pictures since the shutter speed is finite, and the image scene is swept over the image sensor by the unintended movement of the camera. In order to compensate for such unintended movements very high shutter speeds could be used. However, this would affect the low brightness threshold of the camera since less light is captured due to the higher shutter speeds. There are also physical limitations with regard to how fast a shutter can be moved. Digital cameras do also have problems related to the background noise level and read-out speed that affects the maximum possible shutter speed of the camera. In prior art there are known some solutions providing image stabilization by either using a hardware system, or a software program for post processing of captured and stored digital images, or as a combination of hardware and real time software, providing an elimination or compensation of the unintended movements in the captured images.
Currently known methods for image stabilization of digital cameras (still picture and video cameras) typically uses optical lens elements inserted into the light path which are moved laterally by a mechanical mechanism driven by an external motor, for example piezo actuators, voice coils or step motors, and are characterized by a complex arrangement with many parts. For example, a gyro can provide signals providing control signals that counteract unintended movements by moving an optical lens element in an opposite direction than the unintended movement. Other prior art methods uses software algorithms and reduces image blurriness after image capture, but this scheme provides no improved optical quality of the captured image frames, and introduces in stead other image artifacts reducing the quality of the pictures further.
Prior art solutions providing a mechanically driven mechanism makes the camera system larger and more complex to build. The large number of parts does also pose a reliability risk. Software solutions providing an image analysis and filtering of captured and stored digital images tends to crop the images, and then often extrapolate lost image parts at the edges of the image to hide the unintended movements. In astronomy it is often used an orthogonal transfer CCD chip that actually shifts the image within the CCD chip itself while the image is captured based on an online analysis of the apparent motion of celestial objects being observed. Solutions provided for by camera manufactures such as Sony, Nikon, Konica Minolta etc. moves mechanically either the image sensor, or have a floating lens element being moved according to control signals provided for by gyroscopic sensors, sensing both the event and direction of small rapid unintended movements, wherein the unintended motion is characterized by providing a sensor signal above a preset threshold level related to speed, direction and intensity (acceleration and duration) of the movement.
Recent developments of flexible lens bodies provide compact lens assemblies with auto focus capabilities. For example, the Norwegian patent applications No. 20070803 and No. 20065238 provides examples of such devices. The present inventors has realized that these types of flexible lens assemblies may be modified and used to provide a simple, compact and easy manufacturability of systems for image stabilization. The optical image stabilizer according to various embodiments overcomes the complexity of prior art solutions by providing actuators in contact with a flexible lens body providing a shifting of direction of the optical axis through the lens body, and hence the position of a crossing point between the optical axis and a surface of an image sensor, counteracting the movements of the unintended rapid movements. The shift of optical axis direction is obtained by “squeezing” the flexible lens body by activating the actuators according to control signals provided for by motion sensors, for example a gyroscopic sensor system as known in prior art.
According to one aspect, image stabilizers provided for by flexible lens assemblies are suitable for wafer level manufacturing, which enables a new class of fully automated integrated camera solutions.
According to another aspect, the example of embodiment enables compact cameras for e.g. cameras for mobile phones to increase the exposure time without increased blurring due to small rapid unintended movements, since the device compensates the movements. Increasing the exposure time for e.g. CMOS digital cameras implies a strongly increased signal to noise level, less background noise for pictures taken under dark conditions and reduces thresholds used for a required brightness. It also implies that a camera can be designed for a higher F-number, while still capturing the same amount of light (over a longer period of time), compared to lower F-number solutions, which will enable reduced size, complexity and cost of the camera lenses compared to the present prior art lenses.
According to another aspect, a device for providing stabilized images in a hand held camera comprises a flexible lens body arranged in between at least one actuator providing a squeezing of the flexible lens body when applied voltages activates the at least one actuator, wherein the activating voltages alters directions of light passing the lens body proportionally to signals provided by motion sensors sensing yawing and pitching movements, respectively, of the camera.
According to another aspect, a device comprises side walls bounding a cavity filled with transparent polymer on top of a transparent support, wherein a bendable transparent cover is arranged on top of the side walls and the polymer comprising a centrally attached transparent prism, located in between piezo electric actuators located on top of the transparent cover.
According to another aspect, a device comprises a centrally attached prism formed as a cylindrical lens, wherein two separate piezo electric actuators, one on each side of the cylindrical lens is providing a one dimensional displacement of light passing the device.
According to another aspect, a centrally attached prism is a spherical lens, wherein four separate piezo electric elements are arranged in a quadratic pattern around the spherical lens, providing a two dimensional displacement of light passing the device.
According to another aspect, a device comprises the motion detectors that are gyroscopic sensors.
According to another aspect, a device comprises a motion detector that provides a signal only when the signal level is above a preset threshold level.
According to another aspect, the signals from the motion detectors are combined with signals from a tracking device providing a projection of an object onto substantially the same location on an image sensor surface when the device is moved for following the movements of a fast moving object viewed through the device.
According to another aspect, a device for providing stabilized images in a hand held camera comprises a flexible body with a light reflecting coating on an outwardly facing surface arranged in between at least one actuator providing a squeezing of the flexible body when applied voltages activates the at least one actuator, wherein the activating voltages alters directions of incident light being reflected by the body proportionally to signals provided by motion sensors sensing yawing and pitching movements, respectively, of the camera.
According to another aspect, a device comprises side walls bounding a cavity filled with polymer on top of a support, wherein a bendable cover is arranged on top of the side walls and the polymer is comprising a centrally attached body with a reflecting coating on an outwardly facing side of the body, located in between piezo electric actuators located on top of the cover.
According to another aspect, two separate piezo electric actuators, one on each side of the centrally attached body is providing a one dimensional displacement of incident light being reflected from the device.
According to another aspect, four separate piezo electric actuators are arranged in a quadratic pattern around the centrally attached body providing a two dimensional displacement of incident light being reflected from the device.
a and 3b depicts an embodiment.
An ordinary person skilled in the art understands that such arrangements as illustrated in
a and 3b illustrates an embodiment. According to the embodiment, correcting movements of an optical axis through a lens assembly may be accomplished by an arrangement as depicted in
The different examples and embodiments disclosed above provide a control of the crossing point between the light passing through the lens body (or direction of reflected light) and a surface of the image sensor in the camera or video recorder. According to another aspect, other movements that are intended may cause the same type of blurriness that unintended movements may provide in images. Such intended rapid movements can stem from fast moving objects that are photographed or video recorded, for example such as a fast running formula 1 racing car. According to another embodiment, a tracking device may be used to provide regulating voltages onto the piezo electric actuators. When a fast moving object is photographed or filmed by a video camera, the person holding the camera must follow the object as its moves by turning the camera in the direction of the movement. Due to the high speed of the fast moving object this can cause a jogging movement of the camera. This jogging will manifest itself in the images or video streams as blurriness in the images.
According to one example, a tracking device is used with an embodiment, for example as depicted in
Locking a marker onto an object may be utilized together with various embodiments to counteract the problems of photographing or filming fast moving objects. The tracking device of some embodiments comprises a selecting and locking mechanism of an object as known in the prior art. For example, a cursor can be used to select an object for locking through the viewfinder of a digital camera. However, this embodiment does not comprise a motorized camera platform. When the fast moving object starts moving across the image sensor surface of the camera, signals are generated in the tracking device providing information of the movements of the locked object, such as speed, direction and intensity (acceleration) of the locked object. By transforming this information into voltages applied onto the piezo electric actuators according to some embodiments, the movement of the fast moving object is counteracted such that the imaged object itself is always projected onto the same area of the surface of the image sensor. When the object starts to move, ore moves outside the viewfinder of the camera, the person holding the camera will follow the object by moving the camera. However, since this example of embodiments locks the object to the same area on the surface of the image sensor, this following movement by hand that usually provides a jogging sensation in the images is eliminated.
According to another aspect, embodiments may be provided for by wafer level manufacturing. According to an example of manufacturing according to some embodiments, a plurality of devices may be defined by providing a plurality of sidewalls 22, for example in a matrix pattern, on top of a transparent support 23. A polymer can then be filled into the plurality of cavities defined by the matrix pattern. Thereafter, a glass cover 26 may be assembled on top of the polymer and side wall matrix. A glass prism 25 may be an integral part of the glass cover 26, or may be assembled onto the glass cover 26 before the glass cover is arranged on top of the side wall matrix and polymer. A plurality of glass prisms 25 may be arranged in a similar matrix pattern on the glass cover 26, at positions consistent with the cavities bounded by the side walls 26 provided for by the matrix pattern. The piezo electric actuators 24 can likewise be arranged onto the glass cover 26 before or after assembly of the glass cover on top of the side walls 26, as known to a person skilled in the art. After the assembly process is finished, each device in the matrix pattern may be individualized by sawing along the matrix directions in the middle of each respective section of the side walls 22 surrounding each device provided by the matrix pattern.
Number | Date | Country | Kind |
---|---|---|---|
20070797 | Feb 2007 | NO | national |
This application is a continuation of U.S. application Ser. No. 12/526,769, titled “A DEVICE FOR PROVIDING STABILIZED IMAGES IN A HAND HELD CAMERA,” filed Aug. 11, 2009, which claims the benefit and priority to and is a U.S. National Phase of PCT International Application Number PCT/NO2008/000055, filed on Feb. 12, 2008, which claims priority to Norwegian Patent Application No. NO 20070797 filed on Feb. 12, 2007. The disclosures of the above-referenced applications are hereby expressly incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12526769 | US | |
Child | 12776288 | US |