1. Field of the Invention
The invention relates to a device for mounting and demounting a bearing unit, comprised of a chock with a roll pin bearing arranged therein in connection with a back-up roll of a roll stand.
2. Description of the Related Art
It is known to arrange the back-up rolls of roll stands in such a bearing unit, for example, a Morgoil bearing. These have a hydraulic removal device installed within the chock for mounting and demounting the bearing onto and from the roll pin. Of these hydraulic removal devices, remaining at all times in each bearing unit, there must therefore be, for example, in a seven stand rolling train, a total of 28 such units because each back-up roll has on the movable as well as on the stationary bearing side a bearing unit, respectively. In addition to this, at least the same amount of space is required for additional change-over locations, and, moreover, a significant proportion of spare parts is required because they are cost-intensive specialty parts which have a long delivery time. As a result of the constant residence in the bearing unit, the hydraulic removal devices are also subject to external influences within the bearing, such as contaminated oil, bearing damage, and start-ups which reduce the service life and/or require repair work.
It is therefore an object of the present invention to provide a device with which the described disadvantages for back-up roll bearings can be avoided, which, in particular, reduces the expenditure of the bearing change, and which can be used variably.
This object is solved according to the invention by a change-over device which can be temporarily coupled to the bearing unit and is configured for generating an axial movement in the direction toward the back-up roll and away from it. By accordingly providing, on the one hand, a separate change-over device, i.e., a change-over device independent of the bearing unit, which, on the other hand, can be universally used for mounting as well as demounting the bearing unit, one change-over device is sufficient in order to mount or demount the bearing units; only when both bearing units of a back-up roll are to be changed at the same time, a second such change-over device is required. In no case, however, is it required any longer to provide each back-up roll of a roll stand with an integrated hydraulic removal device, as in the prior art. Aside from the fact that the change-over device is no longer exposed to the effects of the rolling operation, a simpler and lighter configuration results for the bearing units. The change-over device can advantageously be used in the bearing and roll shop, and it is only required to couple the device with the bearing unit to be demounted or newly installed in order to mount or demount with, if desired, a single change-over device all bearing units onto or from the respective back-up rolls.
According to one proposal of the invention, the change-over device has lever-like inner claws and lever-like outer claws, wherein the inner claws engage a pin end of the back-up rolls and the outer claws engage the bearing unit. The claws in this case provide the coupling means and serve at the same time for introducing the axial movement in order to push the bearing unit onto the roll pin or to remove it therefrom. Instead of a coupling via claws, the change-over device could also, for example, be coupled by a screw connection to the bearing unit.
In a further embodiment of the invention, the inner and outer claws are rotatable and can be locked like a bayonet closure in the pin end or in the bearing unit. After attaching or inserting the change-over device, the inner and outer claws must thus be rotated only by approximately 45° in order to ensure the locking action.
According to a preferred embodiment of the invention, the pin end and an intermediate ring, screwed externally onto the bearing unit, are cloverleaf-shaped, with through grooves for the inner and outer claws, and the claws have correlated therewith in situ, after rotation into an engagement position, complementary locking projections of the pin end or the intermediate ring, wherein, moreover, a pressure ring, connected in front of the roller pin bearing, is positioned opposite the outer claws. In this way, it can be achieved that the axial movement, introduced into the inner claws locked fixedly in the back-up roll, is deflected during removal into an oppositely oriented movement or force direction caused by the outer claws contacting the locking projections of the intermediate ring and, accordingly, removing the entire bearing unit from the roll pin. On the other hand, the claws press, as a result of the axial movement introduced into the inner claws being reversed also during mounting, onto the pressure ring so that the entire bearing unit is pushed onto the roll pin.
Even though the axial movement could be effected mechanically or by means of an electrical drive, for example, by means of a worm gear and a toothed rack, it is suggested advantageously that the inner claws are arranged on a piston of a hydraulic cylinder that can be integrated into the change-over device. Commercially available standard cylinders can be used for this purpose, and, as a result of the inventive separation of removal device and bearing unit, oil mixing between the lubricant oil and the hydraulic oil required for the axial and rolling pin bearings cannot occur.
When preferably the free piston end facing away from the inner claws of the hydraulic cylinder is provided with a handwheel, the bayonet closure can be reached simply from the exterior, and this is possible uniformly for the entire change-over device. This requires that the through grooves for the inner and outer claws as well as the claws themselves are aligned with one another.
Further details and advantages of the invention result from the claims and the following description with the aid of one embodiment of the invention illustrated in the drawings. It is shown in:
The
On the roll pin 2, i.e., in the area of the roll pin end 9, a pressure ring 11 contacting the axial bearing 5 and a ring nut 12 threaded thereon are arranged on the locking ring 10. The locking ring 10 has also locking projections 13 which have correlated therewith through grooves 14, illustrated in dashed lines in
For mounting the bearing unit 3 in the operating position illustrated in
After completion of these preparatory measures, a change-over device 16 is attached which has four outer claws 17 positioned at identical spacing from one another and four inner claws 18 also spaced at an identical spacing from one another. The inner claws 18 are correlated with through grooves 19, illustrated in more detail in
When the hydraulic cylinder 21 is now loaded with pressure in the direction of the arrow illustrated in bold face, the change-over device 16, secured on the back-up roll 1 by means of the inner claws 18, presses via its outer claws 17 the pressure ring 11 against the roll pin bearing or axial bearing 5. In this way, the bearing unit 3 with its pin bushing 24 is pushed increasingly onto the cone of the roll pin 2 until it reaches the end position according to
For securing this mounting position, the ring nut 12 is tightened to the dead stop. The claws 17, 18 are then aligned with the complementary through grooves 7 and 19 so that the change-over device 16 can be removed. When the holding segment 15 is secured by screwing on the ring nut 12, the ring nut is secured against detachment. As soon as the previously opened closure lid 25 has been pivoted into its closed position (illustrated in dash-dotted line in
The removal process illustrated in
Number | Date | Country | Kind |
---|---|---|---|
199 45 070 | Sep 1999 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP00/09058 | 9/16/2000 | WO | 00 | 6/21/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/21333 | 3/29/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4286830 | Salter, Jr. | Sep 1981 | A |
4352229 | Moore, Jr. | Oct 1982 | A |
5800088 | Luckhof et al. | Sep 1998 | A |
6415489 | Martins et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
195 03 682 | May 1996 | DE |
10723333 | Jan 2001 | EP |