The present invention relates in general to controlling a computer system or an electronic system, and, in one exemplary embodiment, to a device to control an electronic or computer system by means of a fluid flow and a method of manufacturing the same.
Input devices for entering commands into a computer or electronic system are currently available in a variety of forms and configurations. Many such input devices take the form of a keyboard, touchpads, mouse or trackball device. There is an increasing trend of reducing the size of the input devices as work space is reduced or not available. Consequently, it is harder to use such devices without causing stress on the user's fingers, wrist and forearm. Pointing device designers and manufacturers are continually attempting to design devices that are comfortable for the user to operate for long periods of time and reduce Repetitive Stress Injuries.
The U.S., Intelligent Transportation Systems and In-Vehicle Internet converge with phones, infotainment and GPS to turn vehicles, such as automobile and aerospace vehicles, into moving-communicating-spaces.
In relationship to this evolution, safe and easy navigation tools are useful to allow a natural usage of these resources. Also, for reasons of cost constraints and limited instrument panel space, motor vehicle manufacturers are looking towards more integrated driver information systems. So far, touch screens, trackballs and rocker switches have proved to be unsuitable for safety reasons. This is especially so when such input devices require the user to use his hands to operate the devices. Frequently, complex GUI applications are used for such input devices, which again is unsuitable for such environments.
With the convergence of technologies, many computer and electronic applications are increasingly more complex. Frequently, a user is required to perform multiple tasks at any one time. Therefore, hands-free pointing and navigation tools provide means to provide multiple inputs. For example, in electronic music performances, a player may need to provide input to both the musical instruments and computer systems. And in most situations, several input devices, such as a keyboard and a mouse, are used. In another example, a maintenance engineer may probe circuit boards while navigating schematics. Hands-free devices provide a convenient way for the user to provide input to the system.
In some exemplary situations, such as multimedia and gaming applications, hands-free devices may enhance a user's experience. For example, with the advent of so-called TVPCs, which are a fusion of PCs centric and TVs centric technologies, TV sets are operated through GUIs comparable to PCs. A hands-free device enables the user to input his control and command conveniently.
According to the present invention there is provided a device for receiving a fluid current, which fluid current is used to control an electronic or computer system, the device including a body having at least one channel therein; a measurement device to measure a fluid current, the measurement device being located at or near an end of each of the at least one channel to measure the fluid current at or near said end.
a-3b illustrates an input device configured in accordance with an embodiment of the present invention and having three channels therein;
a-4b illustrates an input device configured in accordance with an embodiment of the present invention two channels therein and with or without an exhaust;
a-5c illustrates various exemplary embodiments of channeling for an input device configured in accordance with an embodiment of the present invention;
a-6b illustrates various exemplary embodiments of different channels for an input device configured in accordance with an embodiment of the present invention;
a-10b illustrate different member configurations and a different device configurations for an input device configured in accordance with the present invention;
a-11c show various exemplary embodiments of an exhaust for an input device configured in accordance with an embodiment of the present invention; and
a-12d illustrates various simulation results of a vibrating member for an input device configured in accordance with the present invention.
Embodiments of the present invention are particularly useful as pointing devices, and more generally in connection with command and control technology aimed at human computer and computerized appliances interaction, based on airflow.
Referring to
The device 14 has one or more means for measuring fluid current including members to be deflected or moved from a fixed position by fluid current, for example human breath pressure. The deflection or movement is sensed and converted to an electrical signal to be used for pointer or other control and command operations.
Various methods of sensing the deflection or movement of the members have been described and implemented and are either electromagnetic, optical, or ultrasonic. Independent of the method of sensing, the member motion is controlled by a number of physical features of the device itself and by the way the pressure or fluid current is input. The member undergoes bending, vibration or other movement depending on these factors.
In one embodiment, the member is generally elongated and connected at an end thereof to a body of the device 14. Fluid current hitting the member causes the member to bend or vibrate.
In any event, fluid current flows from a user's mouth. The fluid current may be breathed air, typically blown out from the user's mouth. The fluid current passes through the open space between the user's mouth and the device 14 as there may be no direct contact between the user and the device 14.
The fluid current then flows into the device 14 and is channeled onto the member and then out of an exhaust. These features will be described in more detail below.
There are various parameters involved at the different levels, which effect the fluid current. Firstly, the size of the mouth opening will affect how focused or unfocused the fluid current is. For example, the fluid current velocity will be determined by the breathed air expelled from the mouth.
The present invention uses low ranges of pressure, as low as the phonation pressures (i.e., pressure levels required to speak). Sub-glottal pressure (pressure generated by the lungs) is usually 391-979 Pa, relative to atmospheric pressure (=101260 Pa at sea level and 0° C.). In absolute terms, this means that by blowing a little harder than the pressure it generally takes to speak, a user can use the device 14 (i.e., manipulate the member thereof by breadth control so as to produce desired effects, for example, controlling a computer system). The average shape of the opening the mouth is almost an ellipse of 4 mm by 8 mm, including variations possibly related to morphology. The flow velocity created at the mouth has a wide range depending on how hard a person can breathe. The upper limit of this range would also change from person to person. The range which will be used in connection with many embodiments of the present invention is in the lowermost part of this range for ease of use. In relationship to the system, the flow is controllable from 1.2 to 2 ms-1, and starts to be stressful above 2.5-3 ms-1.
In determining the position of the device 14 with respect to the mouth of the user, a position was sought with no direct contact. Analysis of pressure and flow velocity produced by the mouth at various distances from the mouth determines the distance at which the device can be placed from the user. The velocities shown below can be easily achieved at these distances.
Similarly, the area of focus at these distances helps determine the appropriate distance between members. It has been confirmed with experimentation that the area of focus decreases very little with distance between 20 mm and 45 mm from the mouth. In these distances, the area of focus is a 7 to 9 mm diameter circle.
Within the device itself, members can be positioned flush to the top of the device or just below the top of the device or for example in the case of the vibration embodiment, deeper in the device. When the member is not flush to the top of the device, a channeling effect is provided between the member and the top of the device.
The exemplary device 14 seeks to provide the functionalities of a pointing device, such as a computer mouse. In this case, a two axis pointing is sought. A four-member implementation is logical (X−, Y+, X+, Y−), however, it inherently reduces the surface of each member, given the size requirement for the device. An example of a four member device is illustrated in
Alternatively, a three member design could be used wherein three channels 16 each include a member (not shown) located therein or at an end thereof. Two exemplary embodiments of a three-channel device are shown in
The increase in length illustrated in
Because the channels 16 in the embodiments of device 14 shown in
a and 4b illustrate two exemplary embodiments of a two-channel device, which includes a single member 18 located in or at an end of one of the channels.
In this embodiment, the device includes a body 20 having a first channel 16a and a second channel 16b therein. In
In
The breath of the user hitting a plane surface has a specific velocity profile and a specific pressure profile and channeling the breath is one way to achieve an increase in pressure on members to get significant deflections of a member and thereby achieve improved sensing. In order to channel the fluid current, an internal surface of one or more of the channels may be shaped to effect the flow of fluid current through the channel. Various exemplary embodiments of channels are illustrated in
If the size of the members is considerably reduced and they are fixed away from each other, then the use of channeling to focus the flow can become important. For example, in a very small device such as MEMS (Micro-Electro-Mechanical Systems), channeling may be used to avoid any direct exposure of the members to the ambient environment. The difference in displacements for the members in the cases illustrated in
Particularly, the channel's internal surface may be shaped to affect the flow of fluid current in such a way that fluid current flowing through one channel diminishes fluid current flowing through another of the channels. This is illustrated in FIGS. 6a and 6b. In this way, blowing on one member prevents the opposite member from deflecting, potentially helping the sensing part of the system in obtaining clearer signals. More complex designs may help improve the signal and avoid direct exposure of the member at the same time.
As illustrated in
As illustrated in
Referring now to the members themselves, the members' size should be minimized while the area of the member exposed to the pressure needs to be maximized to get the maximum effect of the pressure. Aligning the members at an angle may be disadvantageous even with channeling, as the angled members eventually aid in channeling. The vertices of the member shape may be rounded for ease of manufacture. Thickness, elasticity and density of the material of the member are calculated based on the maximum travel that is required at the sensing stage for the functioning of the device. Beyond 0.1 mm thickness, due to available pressure from the user, the deflection required is hard to achieve. The effect of self-weight notably as to holding the rest position is seen with increase in length or with lower elasticity plastics. The elasticity is calculated in terms of the Young's modulus of elasticity. The elastic force has to be near to the sum of self-weight and possibly weight of added material (e.g., ferromagnetic particles which will be described in more detail below). The deflection may be described as follow:
The initial displacement is preferably minimized and the final displacement maximized. To achieve this, breath pressure could be increased, but as is indicated above, the breath pressure is almost a constant. It can be increased only by getting closer to the device.
The added weight is preferably decreased even though this might have limitations on the sensing side.
Another alternative is to increase the area in which the breath pressure acts, yet avoiding being disadvantageous for the user as he/she would have to move his/her chin, head or neck to change directions, etc.
The factor of self-weight is usually quite negligible, for instance for polymers or rubbers with high elasticity.
As has been described above, the members can either be bending members or vibrating members.
Design of Bending Members
The maximum deflection is about 35-45% of the length in the case of plastic members. The range can go higher in case of rubber-based members or with rubber added.
Exemplary Calculations for Plastic Members.
By changing MF—by increasing it—, Del2−Del1 can be increased. But this would imply an increase in Del1 too. And because Wt2−Wt1 is small, the increase in MF has to be quite large. The other solution is to increase Wt2−Wt1, by reducing the added mass.
The pivot width has certain restrictions based on the shear strength of the material.
As WP decreases, shear stress increases and can break the member at the pivot point. The shear strain or the shift in area at the pivot will therefore be kept to a minimum.
Typical σ values are much higher than Wt2. Hence WP*H should compensate for this. H is about 0.0001 m or 0.1 mm. This is a typical member thickness.
Hence for an AP of about 25 mm2, WP is approximately 2-3 mm. For AP approximately 10 mm2 WP can be as low as 1 mm.
As has been referred to above, it is possible to add a ferromagnetic strip or layer, for example, on top of a member for shielding. In an exemplary embodiment, a member has a length of 7 mm and includes a ferromagnetic strip of 3 mm. Examples of the simulation of the member are illustrated in
Design of Vibrating Members
The vibration of a member is a combination of the 6 modes illustrated in
These modes and the frequencies are the natural frequencies of vibrations of these members, while the actual frequencies that will be measured are the forced frequencies caused by the changing pressures.
In a further aspect of the present invention, a member for use in the above described devices includes a first part having a relatively smaller surface area and a relatively higher elasticity, while a second part has a relatively larger surface area and a relatively lower elasticity.
The part with higher elasticity holds the other part and is fixed. The other part increases the area at which the pressure is applied and transfers this to the first part. Increasing the area at the top increases the effect of pressure. This is illustrated schematically in
Referring to
It is also possible to adapt the design for larger members. For example, for the device with three members shown in
Also, by increasing the length in this way, the angle at which the member aligns at the end of travel is much smaller. This may help the sensing (depending on type of sensing, e.g., this might get the sensors and members more parallel at the end of displacement). The simulation for such a case is discussed below. The final portion that the fluid current flows through is out of an exhaust.
While in the case of bending members an immediate exhaust may waste a lot of user's energy and would not result in a steady output, in the case of vibrating members the pressure on the members is such that as soon as the member closes part of the exhaust, the pressure would again decrease. Hence there would be an increase and decrease of pressures that would cause vibrations.
Quite similarly, a very late exhaust creates more back pressure and so decreases the possible deflection when bending members are implemented, whereas a very late exhaust helps increase the input pressure thus increasing vibration frequency. Positioning of exhaust is designed according to the types of member and channels to be implemented.
a shows a channel with a through exhaust.
It is also possible to implement the present device with no channeling and a complete exhaust.
The exhaust increases ease of use and efficiency of the device 14. A through exhaust, although beneficial, may be difficult to implement in certain embodiments due to constraints of printed circuit boards and other components. Through exhausts, and tiny holes, also help prevent external winds from generating unwanted stresses on the members, even in heavy winds—given, in addition, that the processing part of the system (e.g., embedded software) is to be designed so as to discard possible outputs from sensors that would result from such external disturbances (e.g., a very heavy wind would stress all of the members in a mostly identical and significant way, thus not being output as a desired interaction, while winds emitted when the user is speaking would possibly result in no more than a slight motion of the pointer, as is very usual with mice or touchpads, and not in a click or similar critical interaction). The distance from the free end of the member to the exhaust is considered negligible to the side of the device, and paths between them should remain unblocked.
The present invention allows a great number of interaction modes, in a variety of environments, with very diverse specifications. Applications include mobile pointing devices in laptop, computer system, wearable systems for military computing, and specific systems to be used in very harsh environments, and further includes Java-based contexts such as Telematics, among other potentialities.
Thus, a device for receiving fluid current, which fluid current is used to control an electronic or computer system has been described. Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The present application is related to, incorporates by reference and hereby claims the priority benefit of the following patent application, assigned to the assignee of the present application: (1) U.S. Provisional Patent Application No. 60/517,038, filed Nov. 3, 2003, entitled “Device for receiving fluid current which fluid current is used to control an electronic or computer system”
Number | Date | Country | |
---|---|---|---|
60517038 | Nov 2003 | US |