This application claims priority to International PCT Ser. No. PCT/KR2010/008834filed Dec. 10, 2010, the entire contents of which are incorporated herein fully by reference, which in turn claims priority to KR Ser. No. 10-2010-0014667, filed on Feb. 18, 2010.
The present invention relates to device and method for reducing soot particles, and more particularly, to device and method for reducing soot particles, which can reduce pollutant emission from combustion apparatuses, such as diesel engines, effectively.
Currently, use of diesel engines increases day by day, making the pollutant emission from the diesel engines to cause various environmental problems. In exhaust gas from the diesel engines, not only nitrogen oxides NOx and sulfur oxides SOx, but also fine particles (for convenience's sake, will be called as “soot particles”), cause problems. Therefore, in order to prevent the soot particles from emitting to the air, a soot particle collecting filter is mounted to an exhaust gas flow passage for collecting the soot particles which are solid particles to be emitted to an outside of the combustion apparatus, and regenerated, periodically or continuously. At the time of regeneration of the filter, the soot particles collected at the filter is burned and discharged as a gaseous substance, for making the filter to return to an initial state.
Presently, as the soot particle reducing systems, there are two systems in use, having shapes of soot collection filters and collection characteristics different from each other. That is, one is a system in which the soot particles are filtered by a filter having a large surface with holes smaller than a size of the soot particle (hereafter called as a “Surface filtration system”) and the other one is a system in which a filter having a stack of a predetermined volume of grains, such as a plurality of metal or ceramic beads, collects the soot particles throughout entire volume (a “Volumetric filtration system”). In the volumetric filtration system, the soot particles deposit on a boundary surface between the grains and pores in a course the exhaust gas containing the soot particles pass through grain layers.
Referring to
In order to solve the problems of the surface filtration system described above, the applicant developed devices and methods for reducing the soot particles, of the volumetric filtration system, and filed a plurality of patents (Korea Patent Application Nos. 10-2000-3814, 10-2001-39523, 10-2002-1902, 10-2005-92078, and so on). As can be known from
To solve the problems, an object of the present invention is to provide improved device and method for reducing soot particles.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, device and method for reducing soot particles are provided in which concepts, of a structured filter which has predetermined shape and structure to collect soot particles with a surface filtration system mostly and a grain layer filter having various shapes of grains for collecting the soot particles with a volumetric filtration system, are made to supplement each other to supplement drawbacks of the systems and maximize advantages of the systems, for providing more efficient and durable device and method for reducing soot particles.
For this, a device for reducing soot particles includes a first filter provided to an exhaust gas flow passage through which exhaust gas from a diesel engine flows to have a predetermined volume of a plurality of grains to be operated as a volumetric filtration system, and a second filter provided to a predetermined position of the second filter to be operated as a surface filtration system. It is preferable that the first filter is a grain layer filter, and the second filter is a structured filter. It is preferable that the second filter has a volume relatively smaller than a volume of the first filter.
Preferably, the second filter is provided parallel to a flow direction of the exhaust gas, and the second filter can be provided to the first filter extended from an inlet portion to an outlet portion of the first filter, and the second filter can be provided in the first filter separated in multiple stages in the first filter. Of course, the first filter and the second filter can be provided in the flow direction of the exhaust gas in succession.
In the meantime, preferably, the device can further include a holding portion for holding the first filter. And, more preferably, the second filter is held by the grains of the first filter.
In the meantime, the second filter can include small sized filter segments coupled together.
In another aspect of the present invention, a method for reducing soot particles includes the step of filtering soot particles in exhaust gas from a diesel engine by a combination of a surface filtration system and a volumetric filtration system which has a predetermined volume of a plurality of grains. Preferably, the step includes the step of collecting the soot particles by the surface filtration system at an initial stage, mostly.
The device and method for reducing soot particles of the present invention have following advantageous effects.
First, the placing of the structured filter and the grain layer filter in the same filter volume (or space) permits to solve the problems of the initial back pressure and initial filtering efficiency of the grain layer filter.
Second, the problems of the mechanical and thermal durability of the structured filter can be solved while maintaining advantages of the structured filter.
Third, the back pressure condition and the filter efficiency can be optimized to various sizes of the diesel engines and operation conditions if unit element of the structured filter, i.e., the number of the segments, is taken into account as a design factor, and by utilizing which a size of the filter which is practically applicable can be made smaller and production economy of the filter can be enhanced.
Reference will now be made in detail to the specific embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
A device for reducing soot particles in accordance with a preferred embodiment of the present invention will be described, with reference to
Since the surface filtration system has a filtration mechanism different from the volumetric filtration system in the related art, there have been many researches for improvement of the surface filtration system and the volumetric filtration system respectively for solving above problems. However, according to researches of the inventor, it is marvelous to discover that the drawbacks of the two filtering systems can be supplemented while maintaining the advantages of the two filtering systems if the surface filtration system structured filter and the volumetric filtration system grain layer filters are combined (Details will be described later). That is, the device 1 for reducing soot particles in accordance with a preferred embodiment of the present invention has a combination of the surface filtration system and the volumetric filtration system.
This will be described in detail. The device 1 for reducing soot particles is provided to an exhaust gas flow passage through which exhaust gas from a diesel engine 10 flows. A housing 100 which forms an exterior of the device 1 has a first filter 210 and a second filter 220 provided thereto. And, it is preferable that a holding portion 11D having a low flow resistance characteristic is provided to a predetermined position for holding the first filter 210 and the second filter 220 against an exhaust gas flow. It is preferable that an inlet portion 120 is a reduction-expansion it is apparent that other appropriate shapes can be used. And, in order to protect the second filter 220 or the filter segments, it is preferable that the second filter 220 is surrounded with coarse metal mesh 221.
The holding portion 110 will be described. It is preferable that the holding portion 110 can hold the first filter 210 and the second filter 220 against the exhaust gas flow and has a low flow resistance. For an example, the holding portion 110 can be a punched plate shape having a plurality of holes, or a woven mesh shape, or a diaphragm. Of course, it is preferable that the holding portion 110 is formed of a material that can endure a high temperature. Though the holding portion 110 can hold both the first filter 210 and the second filter 220, it is preferable that the holding portion 110 is mounted to a front end and a rear end of the first filter 210 having the plurality of grains for holding the first filter 210 only, while the second filter 220 is held by the grains of the first filter 210. Because the second filter 220 is liable to be damaged by thermal expansion if the second filter 220 is restrained by the holding portion 110 in the high temperature environment like the case of filter regeneration. As an example of such a case, the second filter 220 can be made shorter than the first filter 210 so that the front and rear ends of the second filter 220 are not in contact with the holding portion 110 while the second filter 220 is held by the grains of the first filter 210.
A device for reducing soot particles in accordance with another preferred embodiment of the present invention will be described in detail with reference to
A device for reducing soot particles in accordance with another preferred embodiment of the present invention will be described in detail with reference to
A device for reducing soot particles in accordance with another preferred embodiment of the present invention will be described in detail with reference to
The principle of the device and method for reducing soot particles of the present invention will be described with reference to
The present invention utilizes such a principle. This will be described with reference to
If the diesel engine emits the exhaust gas, the exhaust gas is introduced to the device for reducing soot particles. An entire exhaust gas flow can be divided into an exhaust gas flow passing through the first filter 210 portion and the other exhaust gas flow passing through the second filter 220 portion. And, the back pressure on the device for reducing soot particles, particularly, on the filter, is determined by a flow speed (a flow rate) and a temperature of the exhaust gas passing through the filter portion, mostly. As can be known from
In the meantime, as time passes, an amount of the soot particles collected at the second filter 220 portion increases, increasing the flow resistance at the second filter 220 portion gradually and reducing a flow rate passing through the second filter 22D. Though the flow rate reduction at the second filter 220 portion means the flow rate increase flowing through the first filter 210, since the first filter 210 is the grain layer filter, the back pressure increase of the first filter 210 is very slow in view of a nature of the grain layer filter.
In summary, though the device for reducing soot particles of the present invention has an initial pressure of about 26 mbar, if only the first filter 210, i.e., the volumetric filtration system, is used, the initial back pressure is about 62 mbar which is very high. As time passes, the back pressure is almost the same with the case when only the first filter 210 is used. That is, the device for reducing soot particles of the present invention can solve the problem of the initial back pressure of the volumetric filtration system device for reducing soot particles. Eventually, it can be known that the device for reducing soot particles of the present invention is a very good method for solving the problem of the initial back pressure and the problem of the initial efficiency caused thereby of the first filter 210.
In the meantime, though the present invention suggests using the second filter 220 which is the structured filter, the drawback of the second filter 220 can also be solved. As described before, in view of the filtration characteristic and the back pressure characteristic, a major problem of the structured filter is requirement for increasing an area of the filter if it is intended to reduce a back pressure increase rate which increases as the soot particles are collected. And, at the time of regeneration of the filter, prevention of a thermal impact and maintaining a low temperature gradient at an inside of the filter are very important. Accordingly, at the time of regeneration of the filter, it is required to heat the filter slowly and uniformly for maintaining a structure and a performance of the filter. And, if the filter has an external portion that restrains the filter, a function of the filter can fail due to a crack caused by expansion at a high temperature.
In the meantime, even though the present invention uses a structured second filter 220, the present invention can solve above problem. The reason is as follows. At the time of regeneration of the device for reducing soot particles, a high temperature flow passes through the device for reducing soot particles. In this case, the back pressure on the device for reducing soot particles increases further due to an increased flow compared to a time just before the regeneration. And, at the time of the regeneration, a greater portion of the flow passes through the first filter 210 different from the time of the soot particle collection. This is because the first filter 210, i.e., the grain layer filter, has a low back pressure increase rate even if the first filter 210 collects much soot particles therein, and the second filter 220, i.e., the structured filter, has a very high back pressure increase rate in a state the second filter 220 has collected much soot particles therein. In the meantime, since the first filter 210 has a relatively great volume, pass of the high temperature flow through the first filter 210 means a uniform temperature formed throughout the device for reducing soot particles, enabling to reduce sharp rise of the temperature of the second filter 220, accordingly. And, even if a temperature of the second filter 220 portion rises sharply due to combustion of the soot particles at the second filter 220, as heat generated thus is transmitted even to the first filter 210, the temperature gradient can become very small, quickly. Eventually, since the device for reducing soot particles of the present invention permits to prevent thermal impact from taking place at the time of regeneration and to maintain a low temperature gradient in the filter, enabling to heat the second filter 220 slowly, the damage to the second filter 220 can be prevented.
That is, like the device for reducing soot particles of the present invention, if the structured filter is placed in the grain layer filter, the grain layer filter has a very good advantage of securing the filter durability perfectly even if the filter temperature is elevated sharply at the time of regeneration of the grain layer filter, and an advantage of a very good heat distribution characteristic. If the structured filter (Segments) which has a relatively small volume and small thermal capacity is placed in the grain layer filter having a good temperature homogenizing characteristic, the grain layer filter can absorb thermal expansion and contraction of the structured filter segments, thereby permitting to prevent the damage to the structured filter segments caused by the thermal impact from taking place from a source thereof.
In the meantime, since device for reducing soot particles of the present invention can hold the second filter with the grains of the first filter 210, enabling to hold the second filter 220 without any external restrain, the failure of the filter function caused by cracking coming from high temperature expansion of the second filter 220 can also be prevented.
In the meantime, the device and method for reducing soot particles of the present can optimize the back pressure condition and the filter efficiency to various sizes of the diesel engines and operation conditions if unit element of the structured filter, i.e., the number of the segments, is taken into account as a design factor.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0014667 | Feb 2010 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2010/008834 | 12/10/2010 | WO | 00 | 8/10/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/102596 | 8/25/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2288943 | Eastman | Jul 1942 | A |
2396190 | Morgan et al. | Mar 1946 | A |
3018841 | Gerlich | Jan 1962 | A |
3733181 | Tourtellotte et al. | May 1973 | A |
3815337 | Lenane | Jun 1974 | A |
3960510 | Sergeys | Jun 1976 | A |
3960528 | Jacobs et al. | Jun 1976 | A |
4056934 | Mizusawa et al. | Nov 1977 | A |
4074975 | Tokura et al. | Feb 1978 | A |
4106913 | Bunda et al. | Aug 1978 | A |
4299600 | Kobashi | Nov 1981 | A |
4830833 | Shaff | May 1989 | A |
5316738 | Kojima et al. | May 1994 | A |
5367131 | Bemel | Nov 1994 | A |
5403559 | Swars | Apr 1995 | A |
5707593 | Wang | Jan 1998 | A |
5916133 | Buhrmaster et al. | Jun 1999 | A |
6293096 | Khair et al. | Sep 2001 | B1 |
6428755 | Rao et al. | Aug 2002 | B1 |
6680037 | Allansson et al. | Jan 2004 | B1 |
6718757 | Khair et al. | Apr 2004 | B2 |
6770252 | Cheng | Aug 2004 | B2 |
6968681 | Stephani et al. | Nov 2005 | B2 |
7041159 | Entezarian et al. | May 2006 | B2 |
7247185 | Jobson et al. | Jul 2007 | B2 |
7320723 | Sewell, Sr. | Jan 2008 | B2 |
7462340 | Schwefer et al. | Dec 2008 | B2 |
7552585 | Rigaudeau et al. | Jun 2009 | B2 |
7914748 | Yoshida et al. | Mar 2011 | B2 |
7964154 | Makkee et al. | Jun 2011 | B2 |
8015802 | Nishiyama et al. | Sep 2011 | B2 |
8071037 | Harinath et al. | Dec 2011 | B2 |
8153072 | Klingberg | Apr 2012 | B2 |
20050147541 | Ajisaka et al. | Jul 2005 | A1 |
20060153748 | Huthwohl et al. | Jul 2006 | A1 |
20070196248 | Mizutani | Aug 2007 | A1 |
20080286166 | Heidenreich | Nov 2008 | A1 |
20100028221 | Takaya et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
200940503 | Aug 2007 | CN |
20 2005 011 6 | Jan 2007 | DE |
2 342 055 | Apr 2000 | GB |
2006-057614 | Mar 2006 | JP |
10-2003-0076980 | Sep 2003 | KR |
10-2009-0085352 | Aug 2009 | KR |
10-2009-0108012 | Oct 2009 | KR |
WO 2008138146 | Nov 2008 | WO |
WO 2011102596 | Aug 2011 | WO |
Entry |
---|
PCT/KR2010/008834 International Search Report and Written Opinion, mailed Mar. 14, 2011, 11 pages—English. |
JP 2006-057614A—Office Action dated Aug. 5, 2011, 4 pages Korean; 3 pages—English. |
KR 10-2010-0014667 Notice of Allowance dated Jul. 3, 2012, 2 pages—Korean; 1 page—English. |
Number | Date | Country | |
---|---|---|---|
20120304861 A1 | Dec 2012 | US |