Embodiments of the present invention are related to the field of electronics; and in particular, to the reformation of socket contacts of electronic apparatuses.
Modern electronic apparatuses often employ sockets having contacts disposed therein at predetermined positions. Further, the contact surfaces often have desired shapes or profiles. With modern surface mounted metallic spring contact sockets, e.g. Land Grid Array sockets, the contacts are often made of relatively thin materials, and therefore, relatively fragile. As a result, there is a significant probability that mechanical damage and deformation could occur, e.g. during system integration assembly.
Currently there are no devices designed for reforming damaged socket contacts (restoring their shapes/profiles), such as surface mounted metallic spring contact sockets, especially not in a repeatable manner. Under the present state of the art, damaged contacts, such as bent contacts, are often reformed using ad-hoc devices, such as tweezers. However, the ability to restore the shape/profile of a damaged contact to its original position and/or shape/profile using an ad-hoc device, such as a pair of tweezers, is limited. The options to successfully rework damaged contacts at the system level or in the field are often limited to replacement of the motherboard, or thermally unmounting and remounting another socket using surface mount techniques.
Embodiments of the present invention will be described referencing the accompanying drawings in which like references denote similar elements, and in which:
a illustrates a cross-sectional view of a surface profile of a socket contact, in accordance with one embodiment;
b illustrates a perspective view of another profile of another surface of the contact of
Various aspects of the illustrative embodiments will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that alternate embodiments may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative embodiments. However, it will be apparent to one skilled in the art that alternate embodiments may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative embodiments.
Various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the various embodiments of the present invention. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
The phrase “in one embodiment” is used repeatedly. The phrase generally does not refer to the same embodiment. However, it may. The terms “comprising”, “having”, and “including” are synonymous, unless the context dictates otherwise. Similarly, the terms “shape” and “profile”, for the purpose of this application, are synonymous, unless the context dictates otherwise.
As illustrated, device 10 includes an elongated member 12, which is provided with a first formation tip 14 disposed at a first end of elongated member 12. First formation tip 14 is configured with a first surface shape 16 (
Further, device 10 includes a number of support features 25 (to be described more fully below) adapted to support/facilitate moving elongated member 12 between the unengaged position (
As illustrated, when elongated member 12 is in the unengaged position (
Additionally, as illustrated in more detail in the zoomed-inview of
Further, each of arms 30 and 32 has a portion 46/47 of a second formation tip, respectively disposed at or adjacent to second ends 49 and 51. Portions 46 and 47 of the second formation tip are configured to jointly impart a second profile to a second surface 44 of contact 20 (
In various embodiments, actuating surfaces 40 and 42 are moved to engage cam surfaces 36 and 38 to move arms 30 and 32 from the open/unengaged position to the closed/engaged position, when elongated member 12 is moved from the unengaged position to the engaged position. In various embodiments, movement of arms 30 and 32 are synchronous with movement of elongated member 12.
Referring again to
As described earlier, device 10 includes a number of support features 25 adapted to support/facilitate moving of elongated member 12 between the unengaged position and the engaged position, and moving arms 30 and 32 between the open/unengaged position and the closed/engaged position. For the illustrated embodiment, support features 25 include complementary features provided to elongated member 12 and features provided to housing 48. The features provided to elongated member 12 include stop 60 and spring retention component 66. The features provided to housing 48 include one or more engagement stops 26 and 28, one or more disengagement stops 29 and 31, elongated member return spring 50, one or more arm return springs 52 and 54, and spacers 56 and 58 (
For the illustrated embodiment, engagement stops 26 and 28 are affixed to the inside of the housing 48. Engagement stops 26 and 28 are designed to engage stop 60 of elongated member 12 to prevent further “downward” movement of elongated member 12 when it reaches the engaged position from the unengaged position. Recall that, with elongated member 12 at the engaged position, first formation tip 14 would mate with first surface 18 (
In various embodiments, stop 60 is formed with protruding wing sections that are substantially perpendicular to elongated member 12. In alternate embodiments, stop 60 may comprise a collar attached to elongated member 12.
In various embodiments, disengagement stops 29 and 31 are attached to the inside of the housing 48. Disengagement stops 29 and 31 are designed to engage stop 60 to stop further “upward” movement of elongated member 12 after it reaches the unengaged position in returning from the engaged position.
For the illustrated embodiment, elongated member return spring 50 has a first end 62 and a second end 64. Elongated member return spring first end 62 is coupled to disengagement stops 29 and 31 on a surface opposite of the one that engages stop 60 of elongated member 12. Elongated member return spring second end 64 is coupled to spring retention component 66 of elongated member 12. Similar to stop 60, spring retention component 66 may comprise protruding wing sections that are substantially perpendicular to the main portion of elongated member 12, or it may be formed by attaching a collar or other features of the like to elongated member 12.
For the illustrated embodiment, arm return springs 52 and 54 respectively have first ends 68 and 70. Arm return springs first ends 68 and 70 may be respectively attached to engagement stops 26 and 28. Additionally, arm return springs 52 and 54 also have second ends 72 and 74, respectively. For the illustrated embodiment, housing 48 includes a number of side openings, allowing second ends 72 and 74 to be respectively threaded through a first set of these side openings, over externally disposed spacers 56 and 58, then through a second set of side openings, to be finally attached to arms 30 and 32. Arms 30 and 32 may also be referred to as “a pair of arms”.
Top portion 93 and/or bottom portion 97 may be attached to center main portion 95 by employing a threaded screw type of attachment arrangement. In alternate embodiments, top portion 93 and/or bottom portion 97 may be attached to center main portion 95 by employing a friction fit type of attachment arrangement.
In various embodiments, each of portions 93, 95, and 97 may be made of the same or different material. In various embodiments, the various materials include, but are not limited to, metal and plastic tubing.
Referring again to
Similarly, the return arm spring anchors 71 and 73 (
In various embodiments, the one or more arms 30 and 32 may be first pivotally mounted to bottom portion 97 with pins (not shown) that act as pivot points 35 and 37. Thereafter, bottom portion 97 may be attached to center main portion 95. Next, the second ends 72 and 74 of the one or more arm return springs 52 and 54 may be attached to arm return spring attach points (not shown) on the one or more arms 30 and 32 through the side openings (not shown) of bottom portion 97.
In various embodiments, the first ends 68 and 70 of the one or more arm return springs 52 and 54 may be affixed to engagement stops 26 and 28, as shown in
Accordingly, device 10 may be employed to reform a damaged contact 20 of a socket, by first placing device 10 in the unengaged position (
Thereafter, elongated member 12 may be moved upward, placing device 10 back in the unengaged position, and arms 30 and 32 back in the open position. Device 10 may then be withdrawn, leaving contact 20 reformed.
The process may be repeated consistently for other damaged contacts of the same or different sockets. Accordingly, device 10 represents a significant improvement over the present state of art, especially when contrasted with the typical use of ad hoc apparatus, such as tweezers.
Thus, a novel device for reforming damaged socket contacts has been described. While the present invention has been described in terms of the foregoing embodiments, those skilled in the art will recognize that embodiments of the present invention are not limited to the embodiments described. Alternate embodiments may be practiced with modifications and alterations while remaining within the spirit and scope of the appended claims. Therefore, the description is to be regarded as illustrative instead of restrictive.
Number | Name | Date | Kind |
---|---|---|---|
604250 | Jocelyn | May 1898 | A |
688799 | Stern | Dec 1901 | A |
1157969 | Tobin | Oct 1915 | A |
1501222 | Sampson | Jul 1924 | A |
1521268 | Arsenault | Dec 1924 | A |
1912317 | Stewart | May 1933 | A |
2175299 | Malvin | Oct 1939 | A |
2484655 | Shreve | Oct 1949 | A |
2546489 | Wright | Mar 1951 | A |
2654632 | Herbert | Oct 1953 | A |
2740435 | Pritts | Apr 1956 | A |
2783525 | Scharf | Mar 1957 | A |
2942637 | Larsen | Jun 1960 | A |
3628202 | Brown et al. | Dec 1971 | A |
3880205 | Linker et al. | Apr 1975 | A |
3901298 | Eby | Aug 1975 | A |
3948298 | Braden | Apr 1976 | A |
4363250 | Suga | Dec 1982 | A |
4829669 | Nakajima | May 1989 | A |
5203382 | Barnhart et al. | Apr 1993 | A |
5431197 | Linker et al. | Jul 1995 | A |
5479669 | Chen | Jan 1996 | A |
5601123 | Linker et al. | Feb 1997 | A |
5730191 | Cooper et al. | Mar 1998 | A |
5826630 | Moore et al. | Oct 1998 | A |
Number | Date | Country | |
---|---|---|---|
20060021669 A1 | Feb 2006 | US |