This application claims priority to German application No. 10 2012 215 898.7 DE filed Sep. 07, 2012, the entire content of which is hereby incorporated herein by reference.
The invention relates to a device for reliable filling level control in a quencher that receives the hot raw gas and the liquid slag from an entrained-flow gasifying reactor and cools it by injecting an excess of water.
The invention relates to a technology for entrained-flow gasification in which solid and liquid fuels are converted by a gasification medium containing free oxygen under pressures of up to 10 MPa and temperatures of up to 1850° C. into an H2- and CO-rich raw gas. The technology has been described in detail in “Die Veredelung und Umwandlung von Kohle” [The upgrading and conversion of coal], issued by the Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. [German Society for Petroleum, Natural Gas and Coal Science and Technology], section 4.4.3, GSP-Vergasung [GSP gasification].
Accordingly, the raw gas 15, which leaves the reaction chamber at temperatures of up to 1850° C. together with airborne dust and the fuel ash melted into slag, is scrubbed in a quenching chamber by the injection of an excess of water and cooled to water vapor saturation, which at a gasification pressure of for example 4 MPa corresponds to a temperature of about 210° C. The slag collects in the water sump of the quenching chamber and is discharged together with slag water. Together with scrubbing waters and condensates occurring, the excess water from the quenching, as soot water, is subjected to a separation of the solids, to allow it to be recycled to the quenching and scrubbing process.
A dependable measurement of the filling level of the quencher sump 2 in the quenching chamber 1 that is formed by excess quenching water is of particular importance. As
To establish the filling level, the pressures in the upper part of the quenching chamber 1 and at the lower end of the quencher sump are measured, the differential pressure recorded by way of a differential-pressure transmitter 6 being a measure of the geodetic height of the water column, and consequently of the filling level 5, and generating the signals for the control for discharging excess water. For measuring the pressure in the quenching chamber 1, it is connected to one side of the differential-pressure transmitter 6. On the other side of the differential-pressure transmitter, there is, by way of a water-filled line 9, the pressure of the quenching chamber 1 together with the pressure resulting from the geodetic height of the quencher sump 2. The sensing of the pressures mentioned is susceptible to problems due to the formation of deposits and accompanying blockages of the measuring lines leading to the transmitter 6, both to the quencher sump 2 and also from the quenching chamber 1, with the result that the measured values are not produced or are falsified, which can lead to the aforementioned operational problems.
The object of the invention is improved reliability of the filling level control by measuring the pressures in the quenching chamber that are used as controlled variables, even when there is the risk of blockages due to deposits of the measuring locations.
The object is achieved by a device with the features of the independent claim.
The invention provides increased dependability and reliability of the measurement of the height of the filling level in the quenching chamber by flushing of the measuring location, whereby the risk of raw gas entering the overflow 3 or an overflow of the water bath into the raw-gas outlet 4 is reduced considerably.
Advantageous embodiments are specified in the dependent claims.
The invention is explained below to the extent required for understanding, as an exemplary embodiment on the basis of figures in which:
In the figures, the same designations designate the same elements.
The quenching arrangement represented in
On the basis of the measurement of the differential pressure between the gas chamber 1 and the bottom of the water bath 9, as a measure of the geodetic height of the water bath, a differential-pressure transmitter 6 delivers an information signal, which is evaluated as a controlled variable for the discharge of the excess quenching water 3.
Blockages in the line which connects the gas chamber 1 of the quencher to the differential-pressure transmitter 6 are avoided according to the invention by the feed into the quenching chamber being flushed with inert gas 8.
For measuring the pressure in the quenching chamber 1, an inert-gas flushing is launched by way of a quenching nozzle 7, which is connected to one side of the differential-pressure transmitter 6.
In a configuration as shown in
As shown in
In a configuration as shown in
In a special variant as shown in
At the measuring location which connects the quencher sump 2 to the differential-pressure transmitter 6 by way of the line 9, blockages are avoided by the line 9 being flushed with fresh water 10.
1 Quenching chamber
2 Quencher sump, water bath
3 Excess water line
4 Raw-gas outlet
5 Filling level, water level of water bath
6 Differential-pressure transmitter
7 Quenching lance
8 Inert-gas flushing
9 Water-filled line to the bottom of the water bath
10 Flushing line for fresh water
11 Protective sleeve with inner flushing
12 Nozzle head
13 Inner shell, skirt
14 Spray nozzle
15 Raw-gas and slag inlet
16 Skirt flushing
17 Feed of inert gas into the skirt flushing
Number | Date | Country | Kind |
---|---|---|---|
102012215898.7 | Sep 2012 | DE | national |