The invention relates to a device for returning oil separated from blow-by gases and accumulated in an accumulation chamber into the crankcase of an internal combustion engine with a pump.
A generic device is known for example from DE 41 01 203 A1. In this device, an auxiliary pump is used for returning the separated oil. The auxiliary pump can for example be a vacuum pump for generating low pressure in a vehicle brake servo unit, which vacuum pump is driven by the internal combustion engine. It is a disadvantage of this embodiment that it necessitates a complex connection of the auxiliary pump to the device, in particular when the device is not located near the brake servo unit.
A further device is known from DE 20 2004 004 802 U1, in which device the pump is driven by the vibrational energy generated during operation of the internal combustion engine. The generated vibrational energy is conditional on the motion of the piston. However, experience has shown that the thus generated vibrational energy is not sufficient in internal combustion engines comprising more than five cylinders and thereby involving an enhanced running smoothness.
It is an object of the invention to improve a generic device in such a way that the return of the oil is rendered possible for internal combustion engines comprising six and more cylinders as well, wherein the constructional configuration shall be designed to be cost-effective and as simple as possible.
According to the invention, the object is solved by a device comprising the features of claim 1. Preferred embodiments can be learned from the sub claims.
According to claim 1, it is proposed that the pump is located on a component of the internal combustion engine, which component periodically changes the distance to the pump, and that the pump can be driven by magnetic forces acting between the component and the pump. The device proposed according to the invention thus provides the advantage that an already present component of the internal combustion engine is used for driving the pump, and that the proposed drive by means of magnetic forces requires no additional components for transmitting the force.
The magnetic forces can be easily generated by the pump or the component being magnet-equipped and by the respective other component being designed to be magnetic. The term “magnetic” here means that the component is attracted or repelled by the respective other component. In particular all ferromagnetic materials or even plastic materials containing ferromagnetic particles lend themselves as magnetic materials. Preferably permanent magnets lend themselves as magnets to be used, which permanent magnets do not require any connection to external components so that the whole device can be reliably operated in permanent operation even in a hermetically sealed system.
A further preferred embodiment of the invention is that the pump comprises a vulcanised, bonded or insert-moulded permanent magnet, or that the same is formed from a plastic material comprising magnetic particles and/or from an elastomer.
Thereby, a very easy way of magnet equipping is proposed, which can already be carried out during the manufacturing process of the pump or of the magnet-equipped part of the pump. Furthermore, the magnet is thus located on the pump in a loss-proof manner so that the functionality is guaranteed even during permanent operation after a high number of operating hours. Using an elastomer lends itself inasmuch as the magnetic particles can already be introduced during the vulcanisation process and can be magnetised as needed.
Furthermore, the pump or the component can be formed from an elastomer and/or from a plastic material, which elastomer comprises the magnetic particles in a limited portion only. The limited portion then expediently is the portion having the smallest distance during the periodic movement. As a result, optimal use is made of the generated magnetic force. The elastomer and/or the plastic material can then be injected in two steps by injecting the elastomer and/or the plastic material together with the magnetic particles in a first step, and by injecting the plastic material and/or the elastomer without magnetic particles in a second step. Both materials then unite by being vulcanised or fuse in the tool so that the finished part can subsequently be taken out of the machine.
It is further proposed that the pump comprises a diaphragm, and that the diaphragm can be induced to perform a stroke movement as a result of the changing distance of the component of the internal combustion engine. The proposed diaphragm provides a very easy but effective way of transforming the movement of the component moving with a periodically changing distance into a pressure pulsation effecting the return of the oil.
The diaphragm preferably has a spring elastic configuration, wherein the same can automatically be moved back to its initial position after performing the stroke movement. The diaphragm itself can for example be made of an elastomer, wherein the diaphragm then summons up the required reset force for moving back to the initial position by itself by means of its shaping. Alternatively, the diaphragm can also be mounted in a resilient manner and can consist of a dimensionally stable material, wherein the spring forces then pretension the diaphragm to the initial position.
One possibility of shaping is that the diaphragm comprises a circumferential bead. By the proposed bead, a particularly large stroke volume is provided at an equal dimension of the diaphragm so that, conversely, for a predetermined stroke volume, the diaphragm can be reduced in size accordingly.
It is further proposed that the pump is assigned to an intermediate chamber, and that the intermediate chamber can be connected to the accumulation chamber via a first non-return valve permeable in the inlet direction, and to the crankcase via a second non-return valve permeable in the outlet direction. By the proposed assignment of the pump to an intermediate chamber and by the connection to the accumulation chamber and to the crankcase via non-return valves, a device is provided, by which the movement of the periodically changing distance is transformed into a continuous sequence of alternating oil intake phases from the accumulation chamber and oil outlet phases into the crankcase.
A constructively easy way of transforming the periodic excitation by the component of the internal combustion engine is that the pump, at a small distance to the component, generates low pressure in the intermediate chamber and thereby intakes oil from the accumulation chamber by means of the first non-return valve into the intermediate chamber, and, at a large distance, pumps the oil from the intermediate chamber into the crankcase by means of the second non-return valve. The low pressure required for the pumping process is thus generated in the intermediate chamber by generating a magnetic attractive force by the component being moved by so that even in the event of the pump not functioning, as for example at a decreasing magnetic force, a distance is present between the pump and the component so that the component of the internal combustion engine does not touch at the pump and the perfect movement of the component cannot further be disturbed.
For example the cam shaft, the gas exchange valves or parts of the lever mechanism acting upon the gas exchange valves, as for example cam followers, rocker arms, roller-type cam followers, lend themselves as components moving with a periodically changing distance. These do not only provide the advantage of already performing a periodic movement due to their function, but also of being located geometrically near the place where the oil separated from the blow-by gases is returned in the valve body.
In particular in view of the functional reliability at a high number of operating hours it is proposed that the pump can be driven by the component in a non-contact manner. This provides the advantage that no abrasion occurs, and that the parts cannot lock or disturb each other's movement by touching at each other or by clamping.
In the following, the invention is described in more detail on the basis of preferred embodiments, wherein the figures show in detail:
a: Device according to
b: Device according to
Basically, it should be noted that, when the pump 9 is standing still and the oil has been accumulated, the non-return valves 7a and 7b open due to gravity and the oil can discharge so that even in the event of a failure of the pump 9 the oil is returned. The pressure pulsation generated by the pump 9 in the intermediate chamber 6 causes the non-return valves 7a and 7b to alternately open and close so that the oil flow is returned independent of its volume. In the extreme case, when no oil is separated, the pump 9 consequently pumps air.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 019 293.7 | Apr 2008 | DE | national |