The invention relates to a device for separating biomolecules from a fluid comprising a microfluidic component provided with at least one microchannel having at least one of the walls supporting a plurality of nanotubes or nanowires, said component comprising at least one electrode electrically connected to at least a part of the nanotubes or nanowires, the device comprising means for applying a voltage between the electrode and the fluid.
Microsystems of lab-on-a-chip type exist for performing analyses and/or operations on chemical or biological samples of small size. Due to continuous miniaturization, micro and nanoelectronics technologies are enabling more and more functions to be integrated in a single microfluidic component. These functions conventionally consist in pre-processing the sample, filtering it, separating it, detecting it, etc.
Recent developments have enabled the use of carbon nanotubes. international patent application WO-A-2006/122697 thus describes a microfluidic component, illustrated in
International patent application WO 01/63273 describes a device (
Patent application US-2004/0173506 describes the use of nanofibers to form a membrane and to control transport of molecules. The distance separating two nanofibers being representative of the maximum size of the molecules able to pass through the membrane.
Patent application US2007/0090026 describes production of two-dimensional sieve structures by conventional microelectronics techniques to improve the speed and resolution of biomolecule separation. The sieve structures are produced by etching in a silicon substrate by means of photolithography and reactive ion etching (RIE) techniques, which enables controlled topography to be obtained with submicronic precision. The flat sieve structures comprise parallel main channels with a width of 1 μm and a depth of 300 nm connected to one another by lateral channels with a width of 1 μm and a depth of 55 nm. Molecules, such as DNA and protein molecules, can pass from a first main channel to a second main channel via the lateral channels connecting the adjacent first and second main channels. The surfaces of the device can be negatively charged. The weakly negatively charged molecules can thus pass from one main channel to the other with a better probability than the strongly negatively charged molecules.
The separation devices currently proposed in the different studies to separate biological molecules present the major drawback of being difficult to industrialize, as they are costly to fabricate. They do in fact require lithography steps which prove very costly to produce pores or channels of a dimension corresponding to the size of a molecule concerned.
The object of the invention is to provide a device for separating biomolecules from a fluid that does not present the drawbacks of the prior art.
This object is achieved by the appended claims and more particularly by the fact that the nanotubes or nanowires are divided into several active areas in which the nanotubes or nanowires have a different density.
According to an improvement, the density of nanotubes or nanowires of the active areas increases from one area to the next in the direction of flow of the fluid.
According to an improvement, each area is connected to distinct electrodes, the device comprising means for applying different voltages to the different electrodes.
Other advantages and features will become more clearly apparent from the following description of particular embodiments of the invention given for non-restrictive example purposes only and represented in the appended drawings, in which:
According to a particular embodiment illustrated in
The fluid can be made to flow in the separating device by applying for example a pressure difference between inlet 12 and outlet 13 of the device. This pressure difference can for example be applied by using a syringe pusher, a peristaltic pump or any other means known to the person skilled in the art. The microchannel represented in
The microfluidic component can thus be produced in a substrate in which the microchannel is burrowed to form bottom wall 2 and side walls 3a and 3b. Top wall 4 can be formed by a protective cover, preferably hermetically sealed so as to obtain a closed and completely tight microchannel 1. The substrate can for example be made from silicon. The device further comprises means 10 for applying an electric voltage between an electrode 11 of the microfluidic component and the fluid. Electrode 11 can be formed on a part of the microchannel by local doping of the silicon substrate or by using a fully doped substrate.
At least one of microchannel walls 2, 3a, 3b supports a plurality of electrically conducting nanotubes 9 or nanowires forming an array. Nanotubes 9 are preferably perpendicular to the wall or walls that support the latter. Electrode 11 of the fluidic component is electrically connected to at least a part of nanotubes 9. if electrode 11 is formed by the doped substrate, all the nanotubes are automatically connected to the electrode. A DC voltage V, preferably adjustable, is applied between electrode 11 and the fluid by means 10 for applying voltage. In the particular embodiment illustrated in
Nanotubes 9 can for example be made from carbon. Carbon presents the advantage of being conductive. By making the surface potential of the nanotubes vary, the surface of the nanotube thereby enables the amplitude of the electrostatic interaction of each nanotube 9 to be modulated. The fluid filling the microchannel is preferably an electrolyte (aqueous solution containing positive and negative ions), other polar solvent-base fluids being conceivable. When an electric potential V is applied between the nanotubes and the fluid filling the microchannel, according to the sign of the electric potential V, the nanotubes surround themselves with a cloud of counter-ions thereby creating a non-homogeneous distribution of the electric charges and of the local electric fields. The distribution of these counter-ions is known under the term of double electrostatic layer (here around a cylinder). The electric potential is equal to V at the surface of the nanotube and decreases asymptotically to the potential of the fluid. The equipotential surfaces have a cylindrical geometry centered around the nanotube. The characteristic length of the potential decrease is called the Debye length. The Debye length does not depend on the electrostatic potential but on the ion concentration of the fluid or buffer solution filling the microchannel, this concentration also being commonly called “ionic strength” of the buffer. When the distance separating the nanotubes is about the Debye length or less, the array of nanotubes forms an electrostatic barrier defined by equipotential lines and electric field lines perpendicular to the equipotential lines. Thus, when charged particles or molecules approach the nanotubes to which an electric potential has been applied, i.e. that are electrostatically charged, the particles or molecules having a charge of the same sign as that of the nanotubes tend to be repelled.
The phenomenon enabling the molecules to be separated according to their charge is based on the hydrodynamic diameter of the molecules. The hydrodynamic diameter (also noted Dh) corresponds to the dimension (or diameter) of the molecule proper added to twice the Debye length, noted λD. The Debye length corresponds to the thickness of the double electric layer surrounding the molecule when the latter is charged. The Debye length corresponds in particular to the thickness of a cloud of counter-ions locally balancing the charge of the molecule when the latter is charged and contained in a fluid. It depends on the conditions of the fluid comprising the molecule(s), in particular on the type and concentration of electrolyte(s) present and on the temperature.
Separation of the molecules contained in the fluid is performed by the barriers constituted by the nanotube array, more particularly by the passages delineated by two adjacent nanotubes. A nanotube barrier is preferably perpendicular to the direction of flow of the fluid in the microchannel, the nanotubes being supported either by bottom wall 2 or by side walls 3a and 3b. According to an alternative embodiment, the nanotubes can be supported by top wall 4 forming the cover.
The nanotubes forming the barrier preferably occupy a whole section of the microchannel so as to form an alignment of nanotubes over the whole of the section.
The passage delineated by two adjacent nanotubes 9 corresponds to the real distance dr. Thus, as illustrated in
Application of a voltage V between the nanotubes and the fluid filling the microchannel enables a controllable effective distance de to be obtained between two adjacent nanotubes, as illustrated in
Thus, as illustrated in
The weakly charged molecules MFC (small cloud of counter-ions 15) can pass through the barrier of nanotubes 9, whereas the strongly charged molecules MCE (large cloud of counter-ions 15) cannot pass the barrier.
For example purposes, a positively-charged nanotube array can restrain positively-charged molecules if the effective distance de between two adjacent nanotubes is smaller than the hydrodynamic diameter of the molecule. If on the other hand the nanotube array and the molecule are charged by charges of opposite signs, it suffices for the hydrodynamic diameter of the molecule to be larger than the real distance dr separating two adjacent nanotubes of the nanotube array.
Means 10 for applying voltage enable the applied voltage to be modified in order to charge the nanotubes electrostatically and in controlled manner, which enables the probability of a molecule passing through to be increased or decreased.
The electrostatic charge of the molecules contained in the fluid further depends on the pH of the solution constituting the fluid. It is thus possible to adjust the pH of the solution according to the charge required for the molecules, which also enables passage of the molecules to be increased or decreased. The molecules concerned are very often nucleic acids or proteins (assembly of amino-acids) forming weak negatively-ionized acids in certain PH ranges. The fluid used as buffer solution containing these molecules can then be a solution which is more or less charged with salt. The charged molecules then surround themselves with a cloud of counter-ions having a diameter that can range from a few nanometers to several tens of nanometers depending on the concentration and composition of the salts.
The use of electrically conducting nanotubes 9 connected to electrode 11 enables the electric potential of nanotubes 9 to be controlled actively (in real time). These nanotubes 9 are separated by a few nanometers, a distance of 10 nm being able to be envisaged. The distance separating two adjacent nanotubes is preferably comprised between 1 and 20 nm. Thus, when an electric voltage is applied thereto, they can form an electrostatic barrier for the charged molecules having a charge of the same sign as that of the nanotubes. By modifying the voltage between the fluid and the nanotubes, it is possible to modulate the electric potential of the nanotubes, thereby modulating the permeability of the electrostatic barrier.
Such a device both acts as a sieve according to the distance between the nanotubes and/or enables molecules of different charges to be retained or to be allowed to pass.
Such a device can thus act as a filtration and separation system of the molecules, but it can also act as a system enabling the molecules to be concentrated. In the latter case, the molecules of interest simply have to be retained in front of a section of nanotubes forming an electrostatic barrier, while at the same time eluting the smaller molecules. Then, once the retention area situated to the front of the barrier has been enriched with molecules of interest, the electric voltage applied to the barrier is released enabling the molecules of interest to pass and an eluate highly enriched in molecules of interest to be collected.
Production of the microfluidic component described in the foregoing can use the method described in patent application WO-A-2006/122697, from a doped silicon substrate with a resistivity of preferably 0.01 Ω·cm.
According to an alternative embodiment illustrated in
According to another alternative embodiment illustrated in
in an alternative embodiment of
A variation of the density of nanotubes and/or of the voltage applied between the nanotubes and the fluid can thus be used to define the effective distance separating two adjacent nanotubes, and consequently the size and/or charge of the molecules respectively liable to pass through a barrier formed by these nanotubes or to be restrained by this barrier.
To produce a device comprising a microchannel provided with several active areas, the method described in International patent application WO-A-2006/122697 can be modified by using a locally doped silicon substrate to form different electrodes, each electrode then forming an active area 14 on which the nanotubes are formed.
According to another embodiment illustrated in
According to an alternative embodiment illustrated in
The means for applying voltage 10 can comprise a platinum wire 16 (
The embodiments described above enable the molecules of a mixture of arbitrary complexity to be separated, such as a mixture of nucleic acids, and/or a mixture of proteins and/or a mixture of peptides for example. This separation can be performed continuously by modifying the electric voltage applied to the nanotubes in real time.
Furthermore, application of a voltage between the fluid and the nanotubes makes cleaning of the device easier in particular when the DNA molecules are wrapped around the nanotubes, application of an electric potential on the nanotubes enabling the wrapped molecules to be removed.
The device can contain a plurality of microchannels enabling processing of the molecules in parallel.
The invention is not limited to the embodiments described in the foregoing, in particular the nanotubes can be replaced by electrically conductive nanowires, preferably made from doped silicon.
Number | Date | Country | Kind |
---|---|---|---|
08/02523 | May 2008 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR09/00531 | 5/5/2009 | WO | 00 | 12/6/2010 |