This application claims the benefit of priority under 35 U.S.C. §119 of German Patent Application 10 2008 057 345.0 filed Nov. 14, 2008, the entire contents of which are incorporated herein by reference.
The present invention pertains to a device for separating condensate from a coaxial breathing gas line.
A device of this type is known from U.S. Pat. No. 4,457,305. The device, hereinafter called “water trap,” comprises an inlet duct and an outlet duct for breathing gas, which are arranged at an angle to one another. A liquid duct, which can be closed by a valve, is located at the deepest point, in order to remove the condensate from the breathing gas duct. The liquid duct opens into a liquid container, which is pushed over a connecting flange. A pin, which points in the direction of the valve and has such a length that a valve body lifts the valve from its valve seat by the pin when the liquid collecting container is connected to the connecting flange, is located at the bottom surface of the liquid collecting container. With the valve opened, the condensate can flow off from the breathing gas duct into the liquid collecting container. If, by contrast, the liquid collecting container is removed from the connecting flange, the valve body lies on the valve seat and the liquid duct is closed. The valve arranged in the liquid duct is also used to close the breathing gas duct against the environment in order to prevent breathing gas from escaping into the environment when the liquid collecting container is removed.
So-called tube-in-tube systems, which have an inner gas duct and an outer gas duct arranged concentrically thereto in order to send inspiration gas to the patient and to take up expired gas, are also used to respirate patients. Since humidified breathing gas is usually used during respiration, condensate, which must be drawn off, may occur in both gas ducts. Even though it would be possible to provide a separate water trap for each gas duct, this would make handling difficult, because two liquid collecting containers must always be checked and optionally removed during the operation. The use of two separate water traps is possible in the coaxial tube system by technically complicated measures only. Thus, the outer gas duct must be sealed during the removal of the condensate from the inner gas duct. The flow characteristic in the outer gas duct may change in this case and lead to an increase in flow resistance there.
The basic object of the present invention is to provide a condensate separator for a coaxial tube system, which is easy to handle and with which mixing of the gas flows being carried in the gas ducts is prevented from occurring.
According to the invention, a device is provided for separating condensate from breathing gas. The device includes a breathing gas line comprising an inner gas duct and an outer gas duct arranged concentrically thereto. A liquid collecting container is provided with a first collection volume and with a second collection volume and with a partition between the first collection volume and the second collection volume. A connecting flange, at the breathing gas line, is provided for receiving the liquid collecting container. The connecting flange has a first liquid duct between the inner gas duct and the first collection volume and a second liquid duct between the outer gas duct and the second collection volume. A first shut-off valve is provided in the first liquid duct and a second shut-off valve is provided in the second liquid duct. A first valve lifter and a second valve lifter are provided at the liquid collecting container, by which the shut-off valves are switched into the closed position when the liquid collecting container is removed and are switched into the open position when the liquid collecting container is pushed over the connecting flange (i.e., when connected).
The shut-off valves may comprise valve bodies actuated by the valve lifters. The valve bodies may be lifted off from valve seats.
The breathing gas tube may comprise an inner gas duct and an outer gas duct in a coaxial arrangement.
According to a further aspect of the invention, a process is provided for separating condensate from a breathing gas tube. The tube has an inner gas duct and an outer gas duct in a coaxial arrangement. The process includes providing and connecting a device with a liquid collecting container provided with a first collection volume and with a second collection volume and with a partition between the first collection volume and the second collection volume. A connecting flange, at the breathing gas line, is provided for receiving the liquid collecting container. The connecting flange has a first liquid duct between the inner gas duct and the first collection volume and a second liquid duct between the outer gas duct and the second collection volume. A first shut-off valve is provided in the first liquid duct and a second shut-off valve is provided in the second liquid duct. A first valve lifter and a second valve lifter are provided at the liquid collecting container, by which the shut-off valves are switched into the closed position when the liquid collecting container is removed and are switched into the open position when the liquid collecting container is connected.
The advantage of the device according to the present invention is that the inner gas duct and the outer gas duct of the coaxial tube system have separate liquid ducts for draining off the condensate and the liquid collecting container is divided into two separate collection volumes by means of a partition. A first liquid duct for drawing off condensate from the inner gas duct leads into a first collection volume and a second liquid duct is connected to the outer gas duct and to a second collection volume. Mixing of the breathing gas of the inner gas duct with that in the outer gas duct is prevented by the partition between the first collection volume and the second collection volume.
When the liquid collecting container is removed, shut-off valves are closed in both liquid ducts, so that no breathing gas can escape into the environment and the condensate collected in the collection volumes can be disposed of simultaneously for the entire tube system. The liquid ducts between the gas ducts and the collection volumes require only a small cross-sectional area within the gas ducts, so that the breathing gas flow is hardly hindered and only a negligible increase will occur in the flow resistance.
An exemplary embodiment of the present invention is shown in the drawings and will be explained in more detail below.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
In the drawings:
Referring to the drawings in particular,
The liquid collecting container 6 has a partition 7, which separates a first collection volume 8 from a second collection volume 9. A first liquid duct 10 leads from the inner gas duct 3 into the first collection volume 8 and a second liquid duct 11 connects the outer gas duct 4 with the second collection volume 9. A first shut-off valve 12 arranged within the first liquid duct 10 comprises a first valve body 13 with a first pin-like extension 14, which is pressed by means of a first valve spring 15 against a first valve seat 16. A second shut-off valve 17 arranged in the second liquid duct 11 correspondingly comprises a second valve body 18 with a second pin-like extension 19, a second valve seat 20 and a second valve spring 21.
A first valve lifter 23 extends in the direction of the first pin-like extension 14 from the bottom of the liquid collecting container 6 at right angles to the bottom surface 22 within the first collection volume 8 and a second valve lifter 24 extends in the direction of the second pin-like extension 19 within the second collection volume 9.
When the liquid collecting container 6 is located at the connecting flange 5, the valve lifters 23, 24 are in contact with the pin-like extensions 14, 19, as a result of which the valve bodies 13, 18 are lifted off from the corresponding valve seats 16, 20 against the force of the valve springs 15, 21 and condensate can flow off from the inner gas duct 3 into the first collection volume 8 and from the outer gas duct 4 into the second collection volume 9. With the liquid collecting containers 6 removed, the valve bodies 13, 18 lie on the corresponding valve seats 16, 20 and the connections are interrupted.
While a specific embodiment of the invention has been described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 057 345 | Nov 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4457305 | Shanks et al. | Jul 1984 | A |
4867153 | Lorenzen et al. | Sep 1989 | A |
5168868 | Hicks | Dec 1992 | A |
5433194 | Fry | Jul 1995 | A |
7383852 | Pittaway et al. | Jun 2008 | B2 |
20020017302 | Fukunaga et al. | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
3742888 | Jul 1989 | DE |
1456570 | Nov 1976 | GB |
2272745 | May 1994 | GB |
2384844 | Aug 2003 | GB |
WO 0162313 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100122702 A1 | May 2010 | US |