Information
-
Patent Grant
-
6538574
-
Patent Number
6,538,574
-
Date Filed
Monday, April 16, 200123 years ago
-
Date Issued
Tuesday, March 25, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Lee; Benjamin C.
- Nguyen; Phung T
Agents
- MacMillan, Sobanski & Todd, LLC
-
CPC
-
US Classifications
Field of Search
US
- 340 6861
- 340 687
- 340 6862
- 340 82549
- 340 82536
- 116 64
- 187 395
- 187 399
-
International Classifications
-
Abstract
A device for signaling the position of an elevator car in the case of passenger evacuation includes a measurement circuit connected to a landing door safety chain of the elevator installation. The measurement circuit has at least one LED that indicates to a rescuer person the presence of the elevator car at a floor.
Description
BACKGROUND OF THE INVENTION
The present invention relates generally to a device for signaling the position of an elevator car in the case of passenger evacuation, and particularly to a signal device that indicates the presence of the elevator car at a landing door of a floor.
The German utility model document DE 296 15 921 U1 describes a device that can be used for evacuating elevator passengers in a dangerous situation. The device is planned for elevator installations without a machine room, whereby the drive unit is positioned in the elevator shaft. If the elevator car is stuck in the shaft, the brake will be manually released and the car can reach the next floor, where the elevator passengers can leave the car without danger. The actuation of the brake is done by means of an actuator placed on a landing zone, where the elevator control unit also is located. During the evacuation operation the elevator car moves without electric power by means of the unequal balance between the car with the load and the counterweight.
A problem of the known device is that the person who actuates the brake must control the movement of the elevator car by means of the movement of the hoisting rope or of the over speed governor rope. Such control requires much experience and attention and can not be expected from an unpracticed person.
SUMMARY OF THE INVENTION
The present invention concerns a device that solves all of the above-cited problems of the prior art device, and provides a device that enables the evacuation of the elevator passenger safely and without danger.
An advantage of the device according to the present invention is that the evacuation procedure is easy and could be made also by an unpracticed person. Another advantage is that no window in the wall of the elevator shaft is needed to control the movement of the ropes and therefore of the car. Furthermore, no markings are needed on the ropes. By the device according to the present invention, no additional components are required in the shaft, and only the conventional components of the elevator installation are used.
DESCRIPTION OF THE DRAWINGS
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
FIG. 1
is a schematic cross-sectional view of an elevator installation with an evacuation device according to the present invention;
FIG. 2
is an enlarged side elevation view of a conventional door locking system of the elevator installation shown in
FIG. 1
;
FIG. 3
is a circuit diagram of a signal device according to the present invention;
FIG. 4
is a circuit diagram of a signal device according to another embodiment of the present invention; and
FIG. 5
is a circuit diagram of a signal device according to a further embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1
shows an elevator installation without a machine room and including an evacuation device according to the present invention. However, the evacuation device according to the present invention also can be applied to elevator installations with a conventional machine room. An elevator drive unit
1
with a drive sheave
2
moves an elevator car
3
and a counterweight
4
up and down in an elevator shaft
5
by means of ropes
6
. The drive unit
1
is connected to and controlled by a drive control unit
7
. The elevator car
3
moves along guide rails
8
extending vertically in the shaft
5
. A controller cabinet
9
provided with an elevator control unit
10
is positioned on a floor E
2
near a landing door
11
. The elevator control unit
10
is connected to the drive control unit
7
and via a traveling cable
12
to the elevator car
3
. The elevator control unit
10
controls the movement of the elevator car
3
and ensures the safety of the elevator installation.
Also in the controller cabinet
9
is a turnable element or handle
13
that is part of a mechanical power transmission element
14
consisting for instance in an axially rigid tube. One end of the power transmission element
14
is connected to the handle
13
and the other end of the power transmission element
14
is connectable with the drive sheave
2
. In the example of
FIG. 1
, the elevator car
2
travels between a lower floor E
1
and the upper floor E
2
. Obviously more than two floors can be served by the car
3
. In the door zone of each floor are arranged door zone elements
15
. In the embodiment of
FIG. 1
, the door zone elements
15
are positioned on the top of each landing door
11
and they are operated by the interaction with a corresponding actuation element
16
located on the elevator car
3
, preferably on a car door
17
. When the car
3
arrives at one of the floors E
1
and E
2
, the corresponding actuation element
16
interacts with the door zone element
15
. The presence of the car
3
at that given floor is then therefore detected. The detection of the car
3
will then be communicated/transmitted to the elevator control unit
10
, as it will be described below. The interaction between the door zone element
15
and the corresponding actuation element
16
on the car
3
can for instance be mechanically, electrically or magnetically accomplished.
In one preferred embodiment, the door zone elements
15
interact with a landing door safety contact
18
(see
FIG. 2
) located on each landing door
11
. All the landing door safety contacts
18
are connected in serial and are part of a conventional safety chain SC that takes care of the safety of the elevator installation. The state of the landing door safety contacts
18
is used by the signal device of the present invention to signal the presence of the car
3
at the associated one of the floors E
1
and E
2
.
FIG. 2
shows a conventional landing door locking system, which is well known by a person skilled in the art and which is preferably used by the evacuation device of the present invention. The landing door
11
has a lock
19
linked to the landing door safety contact
18
that is closed when the landing door
11
is locked and is opened when the landing door
11
is unlocked. The landing door
11
presents two rollers
20
acting as the door zone element
15
and the car door
17
is provided with two clamps
21
acting as the corresponding actuation element
16
. The unlocking of the landing door
11
is actuated by the two clamps
21
of the car door
17
that push away the two rollers
20
mounted on the landing door locking system. When the car door
17
is locked, i.e. when the car is under power, the two clamps
21
are closed and do not push on the two rollers
20
. When the car door
17
is unlocked (without power), the two clamps
21
open and push on the two rollers
20
that unlock the landing door, and the landing door safety contact
18
is then opened.
A measurement circuit MC is used in the signal device of the present invention. The measurement circuit MC is on a small printed circuit board (PCB not shown) and it is integrated into a conventional electric board of the elevator control unit
10
shown in FIG.
1
. The measurement circuit MC has the objective to detect and signal the opening of the landing door safety contacts
18
. This indication is needed by the rescuer person performing the manual evacuation of the passenger in case of elevator failure.
FIG. 3
is a schematic diagram of a first embodiment MC
1
of the measurement circuit MC shown in
FIG. 1. A
safety chain supply
22
is connected serially to all of a plurality of safety chain contacts SCC of the safety chain SC. All the landing door safety contacts
18
are connected in series and form a chain of door contacts CC, which is therefore part of the safety chain SC. At the beginning of the chain of door contacts CC (a first measurement point A), and between the safety chain SC and a ground potential point PE (zero potential), there is connected a supply circuit SU comprising a frequency generator
23
in series with a first coupling capacitor C
1
. The frequency generator
23
is also connected to a battery or accumulator
24
. At the end of the chain of door contacts CC (a second measurement point B) and between the safety chain SC and the ground potential point PE, there is connected a first detection circuit FD having a light emitting diode (LED)
25
connected in series with a second coupling capacitor C
2
. Connected in parallel with the LED
25
is diode Di for current flow in the opposite direction. The first detection circuit FD can also work with two LED's. If necessary, the capacitors C
1
and C
2
could be serially connected with resistors that are not shown in FIG.
2
.
When all of the landing doors
11
are locked, the chain of door contacts CC is closed. When the car
3
is in a door zone, a mechanical system, for instance as disclosed in
FIG. 2
, makes the coupling between the car door
17
and the landing door
11
, so when the car door
17
is unlocked, it unlocks the landing door too. When there is no power on the car door operator, the car door
17
is unlocked. According to this principle, if the car
3
moves in the shaft
5
without power on the door operator, when it arrives in the door zone, the car door
17
will unlock the landing door
11
and the landing door safety contact
18
will open. By measuring the opening of the landing door safety contact
18
, it can detect when the car is in the door zone.
To measure the opening of the chain of door contacts CC, a signal is introduced at the point A at the beginning of the chain and the first detection circuit FD detects the presence of the signal at the point B at the end of the chain. The signal introduced at the beginning of the chain of contacts CC can be the safety chain supply
22
itself, if the main power is present, or a signal given by the frequency generator
23
supplied by the battery
24
, if there is no main power. The frequency generator signal is introduced on the safety chain SC by means of the first coupling capacitor C
1
that protects the frequency generator
23
against the normal voltage with low frequency of the safety chain SC. In this way the frequency generator
23
can stay connected permanently to the safety chain SC. An activation switch
26
(see
FIG. 4
) to switch on the battery
24
is optional. The second coupling capacitor C
2
of the first detection circuit FD protects the LED
25
against the normal voltage of the safety chain SC, and permits the first detection circuit FD to be connected permanently. The first detection circuit FD and the frequency generator signal are defined so that the first detection circuit FD can work with both input signals: the normal safety chain supply signal and the frequency generator signal. The coupling capacitors C
1
and C
2
work as frequency depending resistors. Their resistance gets lower when the frequency gets higher.
FIG. 4
is a circuit diagram of the measurement circuit MC in a second embodiment MC
2
according to the present invention. The chain of contacts CC is supplied by the small battery
24
. The battery
24
can be activated by the activation switch
26
. On principle, the circuit diagram of
FIG. 4
looks like the circuit diagram of
FIG. 3
, the difference consisting in a second detection circuit SD connected at a third measurement point C, at the beginning of the chain of door contacts CC, the point C at the same potential as the first measurement point A. The second detection circuit SD is connected in parallel with the supply circuit SU. The second detection circuit SD is connected between the safety chain SC and the ground potential PE and it is provided with an additional LED
27
and a third coupling capacitor C
3
connected in series. Connected in parallel with the additional LED
27
is an additional diode Di′ for current flow in an opposite direction. Also, here two LED's can be used. If necessary, the third capacitor C
3
also can be serially connected to a resistor (not shown).
In operation, the additional LED
27
of the second detection circuit SD indicates that the measurement circuit MC
2
is working. The LED
25
of the first detection circuit FD indicates that the car
3
is not at floor, i.e. if the LED
25
is lighted or “on”, then the car is not at the floor, and if LED
25
is “off”, then the car is at the floor.
The elevator installation can be provided with a recall control station, not shown, located in the controller cabinet
9
. The recall control station can be operated for instance by aid of an up button and a down button also not shown.
The elevator shaft
5
is provided, as conventional, with shaft information elements KS (only one is shown as an example) that are used by the elevator car
3
to recognize its position in the shaft
5
. The shaft information elements KS can for instance serve to see if the car
3
is in a deceleration zone or in the door zone. An indication device ID is connected to such shaft information elements KS and is located on the electric board of the controller cabinet
9
. The indication device ID is lighted in two cases: when the car is in the door zone; and when the car is between two deceleration points. The indication device may be a further LED.
With reference to the embodiment shown in
FIG. 4
, the evacuation procedure includes following steps:
Without main power:
Switch on the battery
24
by the activation switch
26
. The battery is now connected.
Move the car
3
slowly from the control cabinet
9
by checking the LED
25
and the additional LED
27
. If the additional LED
27
is “on”, the device is working.
Move the car until the LED
25
switches off. That indicates the car
3
is at the floor.
Switch off the battery
24
.
With main power:
No need to switch on the battery
24
, it is working with the safety chain supply
22
, but if it is switched “on”, it would not cause a problem.
Check the LED
25
and the additional LED
27
.
Move the car
3
with the recall control station until the LED
25
switches “off”. To see that the LED
25
switches “off”, it is necessary to release the recall control station.
To find the door zone, move the car
3
10 cm at a time or look at the LED of the indication device ID connected to the shaft information elements KS when it is “on”.
If by releasing of the recall control station, the LED
25
of the first detection circuit FD does not switch “off”, then continue to move the car
3
with the recall control station until it reaches the next shaft information element KS. Then release the button and check the LED
25
(this time it should go off).
FIG. 5
is a circuit diagram of the measurement circuit MC in a third embodiment MC
3
of the signal device according to the present invention. A first detection circuit FD′ includes the LED
25
connected to the second coupling capacitor C
2
by means of an opto-coupler
28
and an inverter transistor
29
. The inverter transistor
29
causes the LED
25
to turn “on” in the door zone and “off” outside the door zone. In that way the indication of the presence of the car
3
at a floor is signaled in a non-ambiguous way. The second coupling capacitor C
2
is dimensioned so that the measuring circuit MC
3
receives about the same nominal current with both signals, i.e. the signal of the safety chain supply
22
and that of the frequency generator
23
. The second detection circuit SD is connected on the input of the chain of contacts CC at the third point C, in order to check the presence of the signal, i.e. the functioning of the measurement circuit MC
3
. The frequency generator
23
is supplied by an emergency power supply
30
of the elevator (12V DC). As the connection of the emergency power supply
30
with the frequency generator
23
is not part of the safety chain SC, it is disconnected in normal operation by a double safety contact
31
activated by the handle clutch system in the controller cabinet
9
. When the handle
13
is engaged, the double safety contact
31
connects the emergency power supply
30
to the frequency generator
23
and opens the safety chain SC after the measurement circuit MC
3
, i.e. after the second measurement point B. This also avoids the measurement circuit MC
3
discharging the emergency power supply
30
when not needed. When the double safety contact
31
disconnects the emergency power supply
30
, it closes the safety chain SC after the measurement circuit MC
3
, so the safety chain SC is available. When the double safety contact
31
connects the emergency power supply
30
, the safety chain SC is disconnected after the measurement circuit MC
3
. In this case, the safety chain SC is not required because the elevator is actually operated manually. The LED
25
of the first detection circuit FD′ is permanently supplied by the emergency power supply
30
in order to work with the recall control station procedure. The opto-coupler
28
is needed to electrically isolate the emergency power supply
30
from the safety chain SC.
In this further embodiment, two evacuation procedures are possible:
a) With the recall control station if there is main power and the recall control station is available and working.
b) With the manual handle
13
when there is no main power, or if the procedure a) does not work.
Evacuation with manual handle
13
:
Engage the manual handle
13
.
Check that the additional LED
27
of the second detection circuit SD is “on”.
Move the car
3
by turning the handle
13
in the preferred direction (depending on the car load) until the LED
25
of the first detection circuit FD′ is “on”.
The landing door
11
can now be opened manually and the passengers can evacuate.
Evacuation by aid of the recall control station:
With the recall control station, when the car
3
moves, the car door
17
is locked so that it will not unlock the landing door
11
by arriving at a floor and it is not possible to see whether the LED
25
on. To overcome this, it is necessary to use the indication device ID of the shaft information elements KS on the electric board (processor PCB) as described above.
The procedure is as follows:
Check that the additional LED
27
is “on”.
Connect the recall control station and switch it in recall mode.
Move the car
3
by pressing the up or down button until the further LED of indication device ID on the electric board is “on”.
Release the up or down button and check the LED
25
.
If LED
25
is “on”, the car is in the landing zone, and the landing door can be opened manually and the passengers can evacuate.
If the LED
25
is “off”, repeat the procedure by moving the car
3
until it is at the next shaft information element KS (repeat this procedure from third step on).
The measurement circuit should be built to the following requirements:
No device can be connected in parallel on the safety chain SC.
The measurement circuit must be able to work with and without power.
The rescuer person should not have to perform any special action to activate the circuit.
The car in door zone indication should be indicated in a non-ambiguous way.
The LED
25
and the additional LED
27
should be different colors such as a red LED and a yellow LED respectively, or vice versa. The LED's
25
and
27
are low power consumption devices, preferably working with a current of 1 mA. The capacitors and the resistors are chosen so that a current of 1 mA can always pass therethrough for operating the LED's.
The following are examples of the calculation method used to determine the values of the components of the measurement circuit MC.
The values of the coupling capacitors C
1
, C
2
and C
3
are such as the normal safety chain supply (U
n
, F
n
) generates a nominal current I in the LED
25
of the first detection circuit FD, where U
n
is the voltage of the normal safety chain supply and F
n
is the frequency of the normal safety chain supply.
C
2
=1/(
2πF
n
Z) with Z=U
n
/I
To have the same current in the additional LED
27
, C
3
=C
2
, and chose C
1
=C
2
.
The frequency of the generator
23
must be such as to generate the nominal current I in the LED
25
when there is no normal safety chain supply.
(1/(
2πF
b
C
1
)+1/(2πF
b
C
2
))·
I=U
b
F
b
=I/(πC
2
U
b
), whereby U
b
is the voltage of the frequency generator output signal and F
b
is the frequency of the frequency generator output signal.
As example, choose:
I=1 mA
U
b
=5 Vrms
U
n
=110 Vrms
F
n
=50 Hz
The formulas set forth above result in:
C
2
=29 nF
F
b
=2200 Hz
It obvious to a person skilled in the art that the embodiments of the inventions are not restricted to the examples described above, but various modifications within the scope of the attached claims can be envisaged. For example, instead of the LED's, light bulbs or filament bulbs can be used, obviously with the corresponding necessary adaptations (like resistors and/or capacitors) of the measurement circuit. Also an acoustic signal could be applied. This acoustic signal can be used in addition to the light signal or alternatively to the light signal.
In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiment. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
Claims
- 1. A device for signaling the position of an elevator car during a passenger evacuation, comprising:an elevator controller cabinet housing an elevator control unit associated with an elevator car; a plurality of landing door safety contacts connected in series in a door contact chain, each said landing door safety contact being associated with a separate landing door at one of a plurality of floors served by the elevator car, each said landing door safety contact being normally closed and being opened in response to the presence of the elevator car at the associated landing door; a source of electrical power connected to one end of said door contact chain; and a detection circuit mounted in said cabinet and being connected to an end of said door contact chain opposite said electrical power source, said detection circuit being responsive to power provided by said electrical power source for indicating to a rescuer person a presence of the elevator car at one of the landing doors, said detection circuit generating a first indication signal when all said landing door safety contacts are closed representing an absence of the elevator car from the landing doors and generating a second indication signal when one of said landing door safety contacts is open representing a presence of the elevator car at the associated landing door.
- 2. The device according to claim 1 wherein said detection circuit includes at least one LED that is lighted to generate: said first indication signal.
- 3. The device according to claim 2 wherein said one LED is turned off to generate said second indication signal.
- 4. The device according to claim 1 wherein said electrical power source includes a safety chain power supply connected to said one end of said door contact chain and a frequency generator connected to said one end of said door contact chain, said safety chain power supply and said frequency generator each providing electrical power to said detection circuit.
- 5. The device according to claim 4 including another source of electrical power connected to said frequency generator for providing power to said frequency generator.
- 6. The device according to claim 5 wherein said another source of electrical power is one of a battery an emergency power supply of the elevator control unit.
- 7. The device according to claim 1 wherein said detection circuit is a first detection circuit and including a second detection circuit connected to said one end of said door contact chain for indicating tat said first detection circuit is operational.
- 8. The device according to claim 7 wherein said second detection circuit includes at least one LED that is lighted to generate an operating signal indicating tat said first detection circuit is operational.
- 9. The device according to claim 8 wherein said one LED is turned off to indicate that said first detection circuit is not operational.
- 10. A device for signaling the position of an elevator car in an elevator installation during a passenger evacuation, the elevator installation including a plurality of landing door safety contacts connected in series in a door contact chain, each of the landing door safety contacts being associated with a separate landing door at one of a plurality of floors served by the elevator car, each of the landing door safety contacts being normally closed and being opened in response to the presence of the elevator ear at the associated landing door; comprising:a source of electrical power connected to one end of a door contact chain; and a detection circuit adapted to be connected to an end of the door contact chain opposite said electrical power source, said detection circuit being responsive to power provided by said electrical power source for indicating to a rescuer person adjacent a controller for an elevator car a presence of the elevator car at one of the landing doors, whereby when said electrical power source and said detection circuit are connected to the door contact chain, said detection circuit generates a first indication signal when all the landing door safety contacts of the door contact chain are closed representing an absence of the elevator car from the landing doors and generates a second indication signal when one of the landing door safety contacts is open representing a presence of the elevator car at the associated landing door.
- 11. The device according to claim 10 wherein said detection circuit includes at least one LED that is lighted to generate said first indication signal and is turned off to generate said second indication signal.
- 12. The device according to claim 10 wherein said detection circuit includes at least one LED that is lighted to generate said first indication signal, an inverter transistor connected in series with said one LED, an opto-coupler for actuating said inverter transistor and a capacitor connected between said door contact and said opto-coupler.
- 13. The device according to claim 10 wherein said electrical power source includes a frequency generator connected to the door contact chain through a capacitor.
- 14. The device according to claim 10 wherein said electrical power source includes adjacent an elevator control unit associated with the elevator car.
- 15. A device for signaling the position of an elevator car during a passenger evacuation, comprising:a plurality of landing door safety contacts connected in series in a door contact chain, each said landing door safety contact being associated with a separate lauding door at one of a plurality of floors served by the elevator ear, each said landing door safety contact being normally closed and being opened in response to the presence of the elevator car at the associated landing door; a source of electrical power connected to one end of said door contact chain; and a detection circuit connected to an end of said door contact chain opposite said electrical power source and mounted remotely from an area of the landing doors, said detection circuit being responsive to power provided by said electrical power source for indicating to a rescuer person a presence of the elevator car at one of the landing doors, said detection circuit generating a first indication signal when all said landing door safety contracts are closed representing an absence of the elevator car from the landing doors and generating a second indication signal when one of said landing door safety contacts is open representing a presence of the elevator car at the associated landing door.
Priority Claims (3)
Number |
Date |
Country |
Kind |
00810366 |
May 2000 |
EP |
|
00810363 |
Apr 2000 |
EP |
|
00810761 |
Aug 2000 |
EP |
|
US Referenced Citations (11)
Foreign Referenced Citations (2)
Number |
Date |
Country |
296 15 921 |
Apr 1997 |
DE |
0 839 754 |
May 1998 |
EP |