This invention relates to a test rig for an underground train, especially an automatic underground train. In particular, the invention relates to a test rig for train equipment in service, which may receive passengers once testing is completed.
Currently, tests of trains including underground trains are carried out on test tracks. Such a test track can occupy several thousands of square metres, an area that is not always available for setting up a test track and, even if it is available, could advantageously be allocated to other uses.
The invention, for addressing this problem, concerns a test rig that meets the needs to which a test track generally is directed but without the constraint of its encumbrance. As such, such a test rig simulates the test track in a limited space. The test rig in particular simulates:
The test rig must make it possible to reproduce all of the tests that are usually conducted on a test track:
In order to achieve its purpose, a first embodiment of the invention is a rolling unit for a rig for testing a train, especially an automatic underground train, characterised in that it comprises:
In a preferred embodiment, each belt comprises:
Such a rolling unit advantageously comprises a motor, preferably a gear reducer, connected to the pinion, with the motor being in particular suited for modulating the inertia of the inertial body, and/or, simulating a slope, and/or, offsetting the friction internal to the rig. The modulation of the inertia of the inertial body, makes it possible to simulate a train with variable weight, for example more or less loaded.
Preferably, the rolling surface is grooved and the drive wheel is a pinion meshed with this grooved surface.
The invention also proposes a test rig comprising at least one rolling unit according to the invention.
According to a second embodiment, the invention proposes a rig for testing a train, especially an automatic underground train, characterised in that it comprises:
with the rig further comprising means for controlling each motor in such a way as to constantly cancel the difference in speed between the rolling units.
Advantageously, the means of controlling comprise means for ensuring that the corrections ordered of the two motors are globally of zero energy.
The means for controlling can also be adapted to provide a torque setting for:
According to a third embodiment, the invention proposes a device for simulating a communication between the train, especially an automatic underground train, immobile on a test rig, and a track whereon it is made for circulating, characterised in that it comprises:
Such a device according to the invention, in order to simulate an SF communication (acronym for Safety Frequency) between the train, especially an automatic underground train, immobile on a test rig, and a track whereon it is made to circulate, is characterised in that:
Such a device according to the invention, in order to simulate a detection by the train, especially an automatic underground train, immobile on the test rig, of studs present in a track whereon it is made for circulating, is characterised in that:
Other characteristics and advantages of the invention shall appear when reading the detailed description of several embodiments of the invention given as non-limiting examples, in reference to the annexed drawings wherein:
The mechanical set 3 is in charge of the mechanical resistance of the train under test, as well as the transmission and the recovery of the forces transmitted by the train 2 (traction/braking). A rolling unit 8 is placed under each axle 5 of the train 2. Frames 7, formed of a truss of metal joists, are arranged on either side of the rolling units. The frames 7 each form a bearing structure 7-7 for a rolling track 9. This track 9 allows for the circulation of the train 2 when it is placed on the rig 1. The mechanical portion is preferably arranged in a trench, not shown in the figures, is such a way that the rolling track 9 of the rig is level with an access track to the rig.
As shown in
The rig 1 further comprises means for communicating with the train 2, especially:
The rig 1 also comprises electrical means 17, especially:
A rolling unit shall now be described, in reference to
Each unit comprises in particular:
The motor 26 is engaged with a horizontal shaft 30, of axis X30 transversal to the rolling track 9. On this shaft are arranged:
then, in the direction of the second end of the shaft 30:
Each belt comprises a rolling surface 32. This belt 32 is stretched over two respective rollers 33 and is engaged on one of the drive wheels 31. The rollers are substantially identical between them, rotating freely on their respective axes, these axes are horizontal and coplanar. The drive wheel is arranged lower than the rollers; it transmits the movements of the belt 32 to the shaft 30 and to the inertial body 28.
In the example shown, the drive wheels are the pinions 31 and the rolling surface 32 is a grooved surface meshed with a respective pinion 31.
A rolling area 34 is formed by the surface 32 in its upper portion located between the rollers 33. This rolling area 34 is substantially flat and horizontal, it is arranged in the extension of the track 9 carried by the frame 7. Furthermore, this zone 34 is arranged to be displaced according to a longitudinal direction, defined by the longitudinal direction of the track 9.
The rolling area 34 is provided so that a respective wheel 6 of the train 2 rests therein. The surface 32 is driven in movement by the rolling of the wheel 6 on the rolling area 34. Means for maintaining, not shown, arranged under this zone, make it possible to limit the deformation of the rolling area under the weight of the train, partially transmitted by the wheel 6. Thanks to the flatness of the zone 34, the deformation of the tyre is substantially identical to what it is on an operating track. The length of the rolling area is chosen to be sufficiently long to allow for a longitudinal displacement of the axles during testing. There is substantially no vertical displacement; the differences in level between the rolling area 34 and the track 9, which could give rise to a problem during the installation of the train, can be offset easily.
In the example shown, for each belt 27:
The inertial body 28 is rotably mounted on the shaft 30, rigidly connected to the pinions 31, is such a way that it rotates about the X axis 30 of this shaft. In the example shown, the winding diameter of the surface 4 on its pinion 31 is about 800 millimetres and the maximum linear speed of the train 2 is 10 metres per second. As such, the maximum rotating speed of the inertial body 38 is about 4 revolutions per second. The inertial body 28 makes it possible to accumulate or restore energy which simulates the inertia of the train at starting or braking.
The inertial body is arranged between the belts 27, i.e. very close to the latter. As such, the shaft 30 and the inertial bodies 28 constitute an extremely rigid transmission, synchronising the two wheels 6 of the same axle 5. Their strong bending inertia renders the effects of the shaft bending insignificant. These elements constitute the device for synchronising axles.
In the example shown, the inertial bodies substantially have the following characteristics:
The inertial body is implemented using a machined steel tube (inside and outside) whereon flanges, which are also machined, are added by screwing. It is mounted on the frame of the rolling unit by the intermediary of roller bearings.
The rear axle 5 of the car 4 at the front of the train 2, and the front axle 5 of the car 4 at the rear of the train are close to one another. In this example, the distance D51 between these two axles is about 3 metres. A mechanical link between the corresponding rolling units 8 is used.
The two axles 5 of the same car 4 are separated by about 10 metres. In order to eliminate the risks linked to the use of a mechanical link over such a distance, an electric shaft is used to synchronise the corresponding rolling units 8 between them, with the electric shaft forming a virtual link between the bodies. Such an electric shaft comprises encoders provided on each rolling unit. A control in a closed loop is carried out, thanks to the speed sensors 15, by the means of controlling the control unit 9, in such a way as to constantly cancel the difference in speed between the rolling units. It is moreover ensured that the corrections given to the two motors are globally of zero energy. In this way, a stiff and energy-wise neutral mechanical shaft is reproduced, which does not slow down or accelerate the system.
Each electric shaft uses two geared motors 26, with each one mounted on a respective rolling unit 8, at each end of this electric shaft. The motors 26 and variators used are of limited power, with respect to the imbalances to be corrected, not with the total power on the axles. The electrical consumption is low, compatible with the low-voltage distribution network 18, since an energy recovery mechanism 28 is used. In the example shown, each motor 26 has a power of 75 kW.
The controlling of the electric shaft is carried out in such a way that it reproduces a “passive” transmission member, i.e., globally, it does not add or remove any energy from the inertial rig.
The electric shaft offers extended possibilities for use of the rig, via the introduction of a torque setting for:
Stoppers 36, 37 are fixed on the bearing structure 7-7. The stoppers are provided for blocking the train longitudinally. The front stopper 36 is fastened relatively to the bearing structure. The rear stopper 37 is retractable, in such a way that it can be retracted in order to allow for the movements of the train 2, when it is placed on or removed from the rig 1. The manoeuvres of the rear stopper 37 are preferably motorised and controlled manually, for example by using a button box. Position sensors are provided on the rear stopper 37, in such a way that the launching of a test is possible only if this stopper is in place.
The fastening of the stoppers 36, 37 on the bearing structure allows for a mechanical looping of the traction forces and as such prevents mechanically stressing the slab of the trench and the slab of the building, around the trench. The guiding of the train for setting it on or for removing it from the rig, as well as the lateral maintaining thereof during tests is provided by the lateral guide rails 38.
The rig 1 further comprises four simulators of the presence of a foreign body. These simulators are arranged on the bearing structure 7-7, in such a way that each one is facing a detection bar of the tested train. When a simulator is activated, an electric cylinder applies a force of 65N on the detection bars of the trains. When it is not activated, it is retracted under the bearing surface. The force exerted is measured using a load cell. A position or electrical end-of-travel sensor provides information on its position.
During operation, the train communicates via emitting/receiving antennas 41, 42 that are its own, located at the bottom portion of the train 4, and communicating via induced current with current loops arranged in the tracks that are normally used in operations. The rig 1 comprises rig antennas 43, 44 designed to simulate the loops of the operating track. The rig antennas 43, 44 are installed on the bearing structure 7-7, in such a way that each one is facing a respective antenna 41, 44 of the tested train 2. Each antenna 41, 42 of the train 2 is above a rig antenna 43, 44 at a distance D413 substantially equal to the distance between the antennas and the loops on an operating track. The rig antennas are connected to the control unit 10 by the antenna link 13.
The antennas 41-44 are used for a so-called SF link, where SF is the acronym for Safety Frequency. During operation, the loops arranged at regular intervals in the operating track, make it possible to receive an SF carrier which allows a speed of the train on the track to be controlled.
As shown in
The train 2 has two antennas 41, 42 in order to receive a SF signal. These antennas 41, 42, respectively known under antenna names AREC1 and AREC2, are separated from one another by a fixed distance D412. When these two antennas are above the same loop (top portion of
As shown in
As shown in
The power unit 72, unit for forming and processing the signal and the IT control unit 74 are arranged in the IT bay 11 of the control unit 10.
A modulation of the SF signal makes it possible to transmit commands to the train. This modulation as well as the controlling of the phase are generated by the unit for forming and processing the signal. Through this means, the SF link provides the transmission data for putting the train into motion, in particular the starting command and the speed. Special attention is therefore required from a safety aspect of this link. This link must not under any circumstances generate a carrier without phase transition when the train is in motion, which would generate a risk of a sudden acceleration of the train. In order to respond to this safety aspect, a speed sensor 51 is installed on one of the belts 27 in order to transmit the rotation speed. This speed is then used by a logic of modelling and of simulating the track which authorises phase transition, i.e. the passing of a chevron only once the specified distance has been “travelled” by the train on the rolling surface 32. In
The train furthermore has two anti-collision transmitting antennas that stop transmitting in certain cases linked to safety. When the absence of transmission from these antennas is detected, it results in the stopping of the transmitting of the SF signal.
Two anti-collision signal receiving antennas are placed under the train, facing the anti-collision antennas. These receiving antennas are each comprised of a case in which is integrated a coil sized to induce a magnetic coupling that allows for the transmission of information. The signal received is then conditioned then demodulated. The information is sent to the control software.
The train also has telemetry and telecontrol antennas, referred to as TM/TC antennas. A TM/TC link allows for exchanges between the train and the control unit. The train receives TC signals and responds with TM signals. The train has a TM emitting antenna and receives the TC signals via its AREC 41, 42 antennas, provided for the SF signals.
In order to simulate this TM/TC link, an antenna for receiving TM signals is placed under the train facing the TM antenna of the train, and, an antenna for emitting TC signals is placed under the train facing an AREC 41, 42 antenna.
In addition, a train/station link, referred to as LSV/LVS, allows for exchanges between the train and a station. The train receives LSV signals and responds with LVS signals. The train has an LVS emitting antenna and receives the LSV signals via its AREC 41, 42 antennas.
In order to simulate this link, an antenna for receiving LVS signals is placed under the train facing the LVS antenna, and, an antenna for emitting LSV signals is placed under the train facing an AREC antenna.
A voice link is also provided between the train and the control station, in operation, or the control unit 10 on the rig 1. This voice link enables dialogue with an operator located in the train. It can be established in two ways:
When the voice link is established between the station and the train, the voice exchange is carried out via a voice antenna located under the train. This antenna operates for emitting and receiving.
In order to simulate the voice link, a telephone 52 is installed on the desk of the control unit 10 and allows for dialogue with the train. The signal emitted or received by the telephone is conditioned by an electronic resource installed in bay 11. The conditioned signal 14 is then transmitted to a voice antenna installed under the voice antenna of the train. The control software of the rig 1 allows for the sending of a TC frame to the train in order to request the establishing of the voice link. The control software informs the operator in the event of the detection of a TM frame sent by the train requesting the establishing of the voice link; this information can be reported audibly and/or visually.
Metal studs are generally arranged in the operating tracks; they allow a train to know its position on the track and to transmit information. An eddy current sensor, comprised of a mutual inductance bridge that becomes imbalanced in the presence of a metal part less than 95 mm away, is installed in the bottom portion of the train. Studs are metal parts with variable lengths and spacing installed on the track and which are detected by this detector and provide the train with information, in particular a deceleration instruction or platform position information.
During operation, the train is supplied with electricity by a shoe 61 that is in contact with a supply rail. On the rig 1, the train 2 is immobile. The rail comprises a rail 62. The rail 62 comprises a rail section 63 supplied with electricity by a power cable 64. The rail further comprises two sections made of insulating material 66 arranged on either side of the powered section 63. The powered section 63 is arranged in the rig 1 in such a way that when the train 2 is in position to be tested, the shoe 61 rests on it.
In the example shown, the rail further comprises means 67 for driving the powered section 63 according to a longitudinal alternating movement. This movement allows the shoe to not hug the rail. The powered section 63 further comprises a passive radiator to remove the heat due to the friction of the shoe on the rail.
Of course, the invention is not limited to the preferred embodiments that have just been described. Instead, reference is made to the claims that accompany this description.
It will indeed appear to those skilled in the art that various modifications can be made to the embodiments described hereinabove, in light of the information that has just been disclosed to them.
For example, an electric shaft may be used for the synchronisation of all of the inertial bodies, regardless of the distance, large or small, that separates them.
The rig may furthermore be provided for testing trains comprising a single car or more than two cars. Likewise, the rig may be provided for a more or less large number of axles.
As such, instead of being implemented using a tube and flanges, the inertial body can be implemented by a casting method.
A rig according to the invention can be adapted easily to different types of trains. For example, a distance between the rolling units can be modified easily, according to the distance between the axles of the train to be tested.
Number | Date | Country | Kind |
---|---|---|---|
14 60213 | Oct 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2015/052867 | 10/23/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/062983 | 4/28/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4391134 | Theurer | Jul 1983 | A |
4756187 | Gatti | Jul 1988 | A |
6227625 | Gaughan | May 2001 | B1 |
6234011 | Yamagishi | May 2001 | B1 |
7213789 | Matzan | May 2007 | B1 |
20030236654 | Flynn | Dec 2003 | A1 |
20040093196 | Hawthorne | May 2004 | A1 |
20060257826 | Trapp | Nov 2006 | A1 |
20070271078 | Flynn | Nov 2007 | A1 |
20090055041 | Mian et al. | Feb 2009 | A1 |
20120325005 | Oliver | Dec 2012 | A1 |
20130019686 | Oliver | Jan 2013 | A1 |
20170057750 | Ikenaga | Mar 2017 | A1 |
20170059452 | Fischer | Mar 2017 | A1 |
20170305446 | Seaton | Oct 2017 | A1 |
20170315023 | Decobert | Nov 2017 | A1 |
20170336291 | Decobert | Nov 2017 | A1 |
20170361856 | Fischer | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2 755 009 | Jul 2014 | EP |
2 398 798 | Mar 2013 | ES |
Entry |
---|
International Search Report, dated Feb. 10, 2016, from corresponding PCT application, PCT/FR2015/052867. |
Number | Date | Country | |
---|---|---|---|
20170336292 A1 | Nov 2017 | US |