This application claims priority to and the benefit of German Patent Application DE 10 2018 101 683.2 filed 25 Jan. 2018, the contents of which are hereby incorporated by reference in their entirety.
This relates to a device for stacking notes of value, with at least one circulating belt arrangement including an endless belt guided over rollers serving as deflecting elements. On its circumferential surface, the belt has at least one transport tongue into which at least a section of a note of value is insertable. Further, the device includes at least one strip-off element contacting the note of value for the removal from the transport tongue so that, after the removal from the transport tongue, the note of value moves in a deposit direction until it reaches a deposit surface or until it reaches the upper note of value of a value note stack present on the deposit surface.
A large number of stacking arrangements for notes of value is known, in which stacking belts are used. From document DE 10 2008 039 357 A1, for example, a device for stacking notes of value is known, which has a circulating stacking belt. The stacking belt includes a belt body and a pair of tongues provided on the belt body and including at least one transport tongue and at least one press-on tongue for generating a press-on force during the transport of the note of value. In the known solutions, however, after removal from the transport tongues, the notes of value move in an uncontrolled manner in free fall onto an already deposited value note stack or onto a deposit element so that a disorderly value note stack is formed.
In least one embodiment, a device for stacking notes of value reliably and orderly stacks of notes of value.
According to at least one embodiment, the device includes a contact element which is arranged and configured such that during the transport in the transport tongue the note of value moves the contact element into a first position. The contact element contacts an area of the note of value at least after the removal of the note of value from the transport tongue up to the arrival of this note of value on the deposit surface or on the upper note of value of a value note stack deposited on the deposit surface. As a result, it is achieved that, after the removal from the transport tongue, up to the arrival on the deposit surface or on the upper note of value of the value note stack the note of value does not move in an uncontrolled manner in free fall but is accompanied in its movement in deposit direction and thereafter is deposited in a controlled manner.
It is advantageous when, after the removal of the note of value from the transport tongue, up to the arrival of the note of value on the deposit surface or on the upper note of value of the value note stack, the contact element and the note of value move in deposit direction with the aid of gravity. As a result, thereof, actuators can be dispensed with, as a result whereof the error proneness is reduced, and installation space is saved.
Further, it is advantageous when the contact element is pivotably mounted about an axis of rotation and when the contact element is pivotable, for example, by an angle between 5° and 30°, preferably 20°, from the first position in the deposit direction and opposite to the deposit direction. This guarantees that, after the removal from the transport tongue, the note of value is reliably contacted by the contact element up to the deposit on the deposit surface or on the upper note of value of the value note stack deposited on the deposit surface.
In an advantageous embodiment, the contact element includes at least one friction element, the friction element being configured and arranged such that the friction element contacts the note of value when the note of value removed from the transport tongue moves in deposit direction and the contact element is pivoted by an angle between 0.5° and 3°, in particular by 1°, in deposit direction. As a result, it is achieved that the note of value does not contact the friction element when the contact element is in the first position so that the note of value is not slowed down or stopped in its transport movement by the friction element. Further, it is achieved that the note of value is pressed against the notes of value already deposited as a value note stack or against the deposit elements beyond its own weight without adhering or sticking to the contact element.
It is particularly advantageous when the contact element includes at least one sliding element, for example, a longitudinal rib. As a result, it is achieved that by the contact element the note of value is not hindered in its movement, in particular can easily slide along the contact element and does not adhere to the contact element.
Further, it is advantageous when the deposit surface includes a first deposit element and a second deposit element, on which the note of value or the value note stack rests, each of the deposit elements being pivotable about an axis of rotation parallel to its longitudinal axis. As a result, a particularly simple and cost-efficient structure of the device is made possible.
In at least one an advantageous embodiment, the notes of value can be deposited on the first deposit element and on the second deposit element whenever these are in a non-pivoted deposit position. The distance between the transport tongues and the non-pivoted deposit elements or the transport tongues and the notes of value deposited on the first deposit element and the second deposit element further defines a free space. As a result, it is achieved that a limited number of notes of value can be deposited, i.e. stacked, between the deposit elements and the transport tongues.
It is advantageous when the device has at least one control unit and at least a first sensor unit, where the first sensor unit outputs a first sensor signal dependent on the position of the contact element and when a feeding of the note of value into the device is at least not possible whenever the contact element is in the first position. Thus, value note jams are prevented and the error-proneness of the device is reduced.
It is particularly advantageous when the first sensor unit includes a first detecting element, where the first detecting element generates the first sensor signal and transfers it to the control unit. The first detecting element is for example a light barrier or a double light barrier. Thus, an accurate detection of the contact element with the aid of the first sensor unit can be accomplished.
Further, it is advantageous when the device has at least a second sensor unit including a second detecting element, where the second sensor unit outputs a second sensor signal when the second detecting element detects an edge of the note of value in a feeding area of the device. Thus, a reliable detection of the feeding of a note of value into the device can be accomplished.
In an advantageous embodiment, the device includes at least one press-on element, a drive unit for driving the press-on element being controllable with the aid of the control unit such that the drive unit moves the press-on element in the deposit direction. As a result, the value note stack is pressed together and thus compressed so that the value note storage capacity in the device is increased.
It is particularly advantageous when the contact element is connected to the press-on element so as to be pivotable about an axis of rotation. As a result, a particularly simple and cost-efficient structure of the device is made possible.
In an advantageous embodiment, the control unit determines, based on the first sensor signal and the second sensor signal, whether notes of value can be stacked in the free space. Further, the control unit moves the press-on element by a predetermined distance in the deposit direction, as soon as it determines based on the first sensor signal and/or the second sensor signal that no further notes of value can be stacked in the free space. As a result, a particularly reliable and orderly deposit of the notes of value in the form of a value note stack is achieved in the storage area.
Further, it is advantageous when during the movement of the press-on element in the deposit direction the notes of value pivot the deposit elements about their axes of rotation so that they are pushed through between the deposit elements by the press-on element. As a result, a particularly simple and robust structure of the device is made possible.
It is particularly advantageous when the device includes a counter-pressure unit which dependent on the movement of the press-on element is movable in deposit direction with the aid of the control unit. As a result, a reliable deposit of the notes of value is made possible in that the notes of value already received in the deposit area are held in the stacked form.
Various aspects will become apparent to those skilled in the art from the following detailed description and the accompanying drawings.
Referring now to the drawings,
The stacking belt arrangement 120 includes four deflecting rollers of the type of a pulley, of which in
Further, each of the stacking belts 130, 132 includes two transport tongues, of which in
When a note of value is fed to the stacking belt arrangement 120, a non-illustrated control unit controls the drive unit for driving the transport belts 130, 132 such that the first transport tongues 134, 138 or the second transport tongues 136 form by the deflection at the deflecting rollers 122 facing the feeding slot 20 together with the circumferential surfaces of the stacking belts 130, 132 a respective open feed gap. A front area of the note of value fed to the stacking unit 120 is received in this feed gap. By the movement of the stacking belts 130, 132 the feed gaps are subsequently closed, and the notes of value are clamped in the first transport tongues 134, 138 or in the second transport tongues 136.
Further, the device 100 includes a contact element 150 which is connected to a press-on element 170 so as to be pivotable about an axis of rotation 149. The contact element 150 includes a lever arm 152 and an interrupter element 154, where the lever arm 152 has a length between 7 cm and 9 cm, in particular between 7.5 cm and 8.5 cm, for example 8 cm, and the interrupter element 154 has a length between 1 cm and 3 cm, in particular between 1.5 cm and 2.5 cm. When a note of value received in the transport tongues 134 to 138 is guided past the contact element 150, the contact element 150 is moved against gravity from the swiveled-away position P2 illustrated in
A light barrier that is not visible in
The note of value remains in the first or second transport tongues 134 to 138 until these are deflected at the deflecting rollers 124 connected to the driven shaft 142. Upon deflection, the feed gaps are opened, and the note of value is released. The note of value still present in the transport tongues 134 to 138 is stopped at a strip-off element 160. The transport tongues 134 to 138 are moved further by means of the belts so that the notes of value are removed from the transport tongues 134 to 138. The removal from the transport tongues 134 to 138 causes that the note of value falls down and thus moves in a deposit direction R1. Further, the note of value removed from the transport tongues 134 to 138 no longer holds the contact element 150 in the swiveled-on position P1 so that the contact element 150 due to gravity moves in the direction of the swiveled-away position P2 and thus likewise in the deposit direction R1 and in doing so contacts the note of value until it lands on an already deposited value note stack or on deposit elements 200, 202.
The deposit element 200 is pivotably mounted about an axis of rotation 204, the deposit element 202 is pivotably mounted about an axis of rotation 206. In the illustration according to
Based on a first sensor signal of the optical receiver in the recess 172 and on a second sensor signal of the detection unit in the feeding area of the notes of value, the control unit determines whether the free space is sufficiently large so that further notes of value can be stacked. When the contact element 150 is in the swiveled-on position P1 and when no note of value has been fed to the device 100, then the control unit detects that the contact element 150 has been lifted from the already deposited notes of value into the swiveled-on position P1 and that no further notes of value can be stacked in the free space. Based thereon, the control unit controls a non-illustrated drive unit which moves the press-on element 170 in the deposit direction R1 by a predetermined distance until the device 100 has reached a second operating state. The second operating state is described in the following in connection with
The lever arm 152 of the contact element 150 includes a friction element 156 that is configured and arranged such that it contacts the note of value when the note of value removed from the transport tongue 130 to 136 moves in deposit direction R1, and the contact element 150 is pivoted by an angle between 0.5° and 3°, in particularly between 1° and 2°, for example by 1.5°, in deposit direction from the swiveled-on position P1. The friction element 156 is for example a plastic or rubber buffer, which shortens or prevents a movement opposite to the feed direction of the notes of value after removal from the transport tongues 130 to 136, as a result whereof a clean and orderly deposit of the notes of value as a value note stack on the deposit elements 200, 202 is achieved.
The press-on element 170 is movable in the deposit direction R1 and opposite to the deposit direction R1 by a gear arrangement 180 drivable by a non-illustrated drive unit. A movable slide 194 connected to the gear arrangement 180 is connected to a first scissors lever 182 via a shaft 183. The first scissors lever 182 is connected to a second scissors lever 184 via a shaft 186. The scissors levers 182, 184 are engaged with the press-on element 170 via a respective shaft 188, 190. By way of the non-illustrated drive unit and the gear arrangement 180 the movable slide 194 can be moved from the position illustrated in
The friction element 156 is offset with respect to the sliding elements 158, 159 of the lever arm 152 by a distance between 0.1 mm and 0.5 mm in the direction of the interrupter element 154, arranged in the shadow of the lever arm 152. As a result, it is achieved that the friction element 156 does not contact the note of value when the note of value presses the contact element into the swiveled-on position P1. The friction element 156 contacts the note of value only when the note of value removed from the transport tongue 134 to 138 moves in deposit direction R1 and the contact element 150 is pivoted by an angle between 0.5° and 3°, in particular by 1°, in the deposit direction R1.
By the contact between the note of value and the friction element 156 during the movement of the note of value in the deposit direction R1, it is achieved that the note of value is pressed against the notes of value already deposited as a value note stack or against the deposit elements 200, 202 beyond its own weight, without sticking or adhering to the contact element 150. Further, after deposit, the note of value is reliably held on the deposit elements 200, 202 or on the value note stack present thereat until a further note of value is fed to the device 100 and presses the contact element 150 into the swiveled-on position P1 against gravity.
In
When the notes of value are pushed through the deposit surfaces 200, 202, they are deposited on the counter-pressure surface 302 or on notes of value already deposited on the counter-pressure surface 302. A non-illustrated control unit controls the drive unit such that the movement of the counter-pressure element 302 is caused dependent on the movement of the press-on element 170.
In at least one alternative embodiment, no deposit elements 200, 202 are be provided. Further, alternative embodiments are also possible, in which no press-on element 170 and/or in which no friction element 156 is provided. In other alternative embodiments, an elastically deformable element, for example a spring or an elastomer block may be provided, which exerts a force on the contact element 150 in the direction of the value note stack.
While principles and modes of operation have been explained and illustrated with regard to particular embodiments, it must be understood, however, that this may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
Number | Date | Country | Kind |
---|---|---|---|
102018101683.2 | Jan 2018 | DE | national |