1. Field of the Invention
The present invention relates to a device for starting an internal combustion engine.
2. Description of the Related Art
For starting internal combustion engines, drives are used which are supplied by an energy source that is independent from the fuel supply. As a rule, direct current motors are used whose drive pinion initially meshes with an annular gear of the internal combustion engine in order to subsequently drive the internal combustion engine. After termination of the starting operation, the drive pinion disengages from the annular gear of the internal combustion engine. A shared relay is used for the meshing operation and switching the main current through for driving the direct current motor. An associated schematic wiring diagram is illustrated in
A starter device for starting an internal combustion engine is known from published European patent document EP 0 848 159 B1, having a starter motor which is connectable to a voltage source via a starter relay and which is engageable with the internal combustion engine for cranking the internal combustion engine. In addition, an electronic control unit is provided for energizing the starter relay and/or the starter motor. The electronic control unit controls semiconductor power output stages associated with the starter relay and/or the starter motor in such a way that, at least during start-stop operation of the internal combustion engine, the starter relay is in its meshing position in the stopped state of the internal combustion engine. For this starter device, the starter relay is energized after a start switch is activated, so that on the one hand a contact which connects the starter motor to a supply voltage is closed, and on the other hand, independently therefrom, the pinion of the starter motor meshes with an annular gear situated on a crankshaft of the internal combustion engine.
Published German patent application document DE 10 2009 000 125.5 describes a device for controlling an electromagnetic switching element, in particular a relay, in which the period of time that elapses between triggering of the energization and the energization, and also the period of time that elapses between triggering of the deenergization and the deenergization, is reduced. This type of relay may be used in conjunction with pinion/starter-based start-stop systems. For energizing this type of relay, three control lines are provided via which a control unit activates switching elements which, as a function of their switching position, allow or block a current flow through two independently energizable coils of the relay.
A device for starting an internal combustion engine according to the present invention has the advantage over the related art that an improvement in the start-stop operation of the internal combustion engine is achieved due to the separation of the meshing mechanics from the contact-making of the starter current. In particular, an internal combustion engine equipped with the device is able to respond quickly to a restart intent of the driver. Furthermore, little or no dip in starting voltage occurs in an internal combustion engine equipped with the device.
In addition, the device may be easily integrated into an existing mechanical design of internal combustion engines and transmissions. The components of the device may be flexibly mounted in a modular manner. The switches may be used with an additional series resistor, even for conventional systems, for reducing a dip in starting voltage.
A device according to the present invention results in lower overall costs compared to systems which electronically switch or regulate the starting current.
In addition, for a device according to the present invention, less meshing noise and less cranking noise occurs on account of smooth meshing and smooth cranking.
Furthermore, the service life of the starter device is prolonged due to the smooth meshing, smooth cranking, and peak current reduction.
The present invention is suitable for promoting increasing prevalence of motor vehicles having start-stop functionality, meets expanded system requirements compared to previous start-stop systems, and is associated with an expansion in the functions of the start-stop system. This includes ensuring the starting capability of the particular vehicle upon every start intent of the driver. This also includes the occurrence of little or no voltage dip during starting. These advantages are achieved in particular in that the main current for the starter motor is conducted, on the one hand via a series resistor, and on the other hand directly to the starter motor in a time-delayed manner. This is implemented in that the functionalities of a conventional starter relay are separated. According to the present invention, a meshing module for meshing the drive pinion and a switching module are provided for conducting the starter current on the one hand via a series resistor, and on the other hand directly to the starter motor in a time-delayed manner.
When the vehicle is started, solenoid switch ES is initially energized in order to mesh drive pinion 6 with annular gear ZK of crankshaft KW of internal combustion engine VM with the aid of engaging shift lever 7. First switch 3 is then brought into the closed state by energizing starting current relay KA, so that terminal 30 is connected to starter motor M via first switch 3 and series resistor RV. Main current relay KH is then energized in a time-delayed manner, so that second switch 4 is brought into the closed state. Terminal 30 is thus connected directly to starter motor M via switch 4.
This separation of the functionalities of a conventional starter relay allows smooth meshing of the drive pinion of the starter motor with the annular gear of the crankshaft of the internal combustion engine, and also smooth and noiseless yet reliable cranking of the crankshaft of the internal combustion engine during every start intent of the driver. In addition, the cranking of the starter and the kick-in are independent from one another, which is advantageous for the meshing with the coasting engine.
Control unit 5 is either the engine control unit of the particular motor vehicle or a separate control unit of the motor vehicle. This is illustrated in
The individual components of the device illustrated in
Starter motor M, which is provided for meshing drive pinion 6 with the annular gear of the crankshaft of the internal combustion engine and for cranking the crankshaft, is implemented as a direct current machine.
Meshing module EM has a mechanical relay ES or, alternatively, an electric servomotor. The function of contact making of the starter current is not implemented by the meshing module.
One exemplary embodiment of a mechanical relay is illustrated in
Switching module SM, which is provided for supplying the main starter current via a series resistor and also directly to the starter motor, has the two mechanical switches 3 and 4. Options for connecting same are illustrated in
Switching module SM may be implemented as an add-on to the drive bearing of the device, or alternatively, as a stand-alone approach. For simplified requirements with regard to a dip in starting voltage, first switch 3 and series resistor RV may optionally be dispensed with.
Series resistor RV is preferably made of resistance material and implemented by an electrical line or a coil. It is important that heat dissipation is ensured due to the flowing currents of up to 800 A. Series resistor RV may be integrated into a component, for example switching module SM or the drive bearing of starter motor M, or may be implemented as a stand-alone approach.
As previously explained in conjunction with
For energizing meshing module EM and switching module SM, drivers for the relays as well as a logic system are used to ensure the desired functions of the overall device. These functions include rapid restarting of the internal combustion engine when a restart intent of the driver is present, which is initiated by depressing the gas pedal or the clutch or releasing the brake. These functions include in particular rapid restarting when the internal combustion engine is coasting. Additional functions are a reduction in a dip in starting voltage, as well as safety functions such as recognition of malfunctions and misuse situations, and shut-down in the event of error or in misuse situations.
Meshing relay ES is optionally energized in a current-controlled manner.
In addition, according to one advantageous specific embodiment of the present invention, the voltage applied to terminal 45 of the starter of the motor vehicle is read into control unit 5, and is taken into account by the control unit in energizing meshing module EM and switching module SM, in particular for determining the switching times of switching module SM and/or of meshing module EM. This allows a diagnosis as to whether or not the starter motor has cranked in the case of a current feed, and whether or not the meshing operation has occurred. This corresponds to an error diagnosis. Furthermore, it is thus possible to compensate for the variances in switching on and switching off of the switches, and to determine the run-up characteristic of the starter.
As stated above, the number of control lines between control unit 5 and the starter, including switching module SM, meshing module EM, and starter motor M, depends on the type of relays used.
Engine control unit ECU is connected to terminal 50 of the motor vehicle, and receives start information via this terminal at an input E1. In addition, engine control unit ECU contains a logic system LG for implementing the particular desired functions of the overall device. Furthermore, engine control unit ECU contains an input E2 for a sensor signal which is deduced from an engine speed sensor VM, and an evaluation unit AW1 which ascertains rotational speed n and angular position Φ of the crankshaft of internal combustion engine VM based on these sensor signals. The information concerning rotational speed n and angular position Φ is relayed to logic system LG, which uses this information for implementing the particular desired functions of the overall device. In addition, according to one advantageous embodiment, engine control unit ECU has an input E3 for a voltage signal which is deduced from terminal 45 of the motor vehicle, and an evaluation unit AW2 for evaluating this voltage signal.
The information concerning the measured voltage is likewise supplied to logic system LG, which uses this information for implementing the particular desired functions of the overall device. Furthermore, engine control unit ECU has a CAN interface CI, and is thus able to exchange data via the CAN bus with other modules of the motor vehicle. Lastly, a driver unit T is also integrated into engine control unit ECU. This driver unit T includes a total of three drivers which provide control signals for solenoid switch ES, starting current relay KA, and main current relay KH. The number of drivers varies depending on the number of relays and windings used, between two (ES: single winding, KH: single winding, KA: not applicable) to six (ES, KH, and KA each having a double winding) or nine (ES, KH, and KA energized, e.g., according to published German patent application document DE 10 2009 000 125.5).
The right portion of the device shown in
The specific embodiment shown in
In this specific embodiment, the desired start-stop operation strategy is stored in engine control unit ECU, which then communicates with separate control unit RCU via a CAN bus CAN. In addition, a separate hardware line HW1 is provided between engine control unit ECU and separate control unit RCU, via which engine control unit ECU supplies separate control unit RCU with information concerning rotational speed n of the drive shaft of starter motor M. Furthermore, according to one advantageous embodiment, another separate line HW2 is provided between engine control unit ECU and separate control unit RCU, via which an emergency shutoff signal may be transmitted, if needed, from engine control unit ECU to control unit RCU which deactivates the start function if a malfunction is present. In addition, control unit RCU has a microcomputer μC for controlling the functions of the overall device in the desired manner.
As is apparent from
Control unit RCU likewise contains a CAN interface CI, and a unit REC for receiving the information concerning rotational speed n and angular position Φ of the crankshaft of internal combustion engine (VM). The signals received by control unit RCU via the CAN interface, an optionally received start signal which is deduced from terminal 50 of the motor vehicle, and the mentioned information concerning rotational speed n and the angular position of the crankshaft of internal combustion engine (VM) are supplied to microcomputer μC of control unit RCU, and are used by same for implementing the particular desired functions of the overall device. In addition, according to one advantageous embodiment, control unit RCU has an input E3 for a voltage signal which is deduced from terminal 45 of the motor vehicle, and an evaluation unit AW2 for evaluating this voltage signal. The information concerning the measured voltage is likewise supplied to microcomputer μC, and is used by same for implementing the desired functions of the overall device.
Furthermore, as is apparent from
The right portion of the device shown in
The specific embodiment shown in
Alternatively, separate control unit RCU may be controlled by a different control unit having a microcontroller.
It is apparent from
In addition, according to one advantageous embodiment, engine control unit ECU has an evaluation unit AW2 for evaluating a voltage signal. This voltage signal is deduced from terminal 45 of the motor vehicle.
Microcomputer pC evaluates the signals supplied to it, and controls driver T of driver unit RDU via communication interface K.
In turn, the driver provides output signals for solenoid switch ES, starting current relay KA, and main current relay KH.
The microcomputer coordinates relays ES, KA, and KH via driver unit RDU in such a way that the particular desired functions of the overall device are carried out. If necessary, the microcomputer also supplies driver T with an emergency shutoff signal via a separate line HW2, thus terminating a start operation.
According to an alternative specific embodiment not illustrated in
Alternatively, driver unit RDU may be controlled by a different control unit having a microcontroller instead of by the engine control unit.
Examples of the energization sequence of relays ES, KA, and KH are described below with reference to
a illustrates a first exemplary embodiment of an initial start of the vehicle. In this first exemplary embodiment, solenoid switch ES is initially switched on in order to mesh the drive pinion with the annular gear on the crankshaft of the internal combustion engine. At a time thereafter, with solenoid switch ES still switched on, starting current relay KA is switched on in order to smoothly set starter motor M in motion via series resistor RV. Once again at a time thereafter, with starting current relay KA and also solenoid switch ES still switched on, main current relay KH is switched on in order to drive the annular gear, and therefore the crankshaft, with the full force of starter motor M. Subsequently, starting current relay KA is switched off first, then main current relay KH is switched off, and lastly, solenoid switch ES is switched off.
b illustrates a second exemplary embodiment of an initial start of the vehicle. In this second exemplary embodiment, solenoid switch ES is initially switched on in order to mesh the drive pinion with the annular gear on the crankshaft of the internal combustion engine. At a time thereafter, with the solenoid switch still switched on, starting current relay KA is switched on in order to smoothly set starter motor M in motion via series resistor RV. Once again at a time thereafter, with solenoid switch ES still switched on, but with starting current relay KA already switched off, main current relay KH is switched on in order to drive the annular gear, and therefore the crankshaft, with the full force of starter motor M. Subsequently, main current relay KH is switched off first, and then solenoid switch ES is switched off.
c illustrates a third exemplary embodiment of an initial start of the vehicle. In this third exemplary embodiment, solenoid switch ES is initially switched on in order to mesh the drive pinion with the annular gear on the crankshaft of the internal combustion engine. At a time thereafter, with solenoid switch ES still switched on, main current relay KH is switched on in order to use the starter motor right away with full force for driving the annular gear and therefore the crankshaft of the internal combustion engine. At a time thereafter, main current relay KH is initially switched off, and then solenoid switch ES is switched off. Starting current relay KA is inoperative in this third exemplary embodiment. Depending on the ambient temperature and/or the state of the vehicle electrical system, this third exemplary embodiment may be used when insufficient power is available via series resistor RV for accelerating starter motor M in the initial or cold start.
a illustrates a first exemplary embodiment of an automatic start carried out within the scope of the start-stop operation. In this first exemplary embodiment, within the scope of a stopping operation the drive pinion initially meshes with the annular gear while the engine is still coasting. Starting current relay KA is switched on first in order to smoothly set starter motor M in motion. Subsequently, starting current relay KA is switched off. At a time thereafter, solenoid switch ES is switched on in order to mesh the drive pinion with the annular gear. At a time thereafter, with solenoid switch ES still switched on, the automatic start is carried out, which is initiated, for example, by depressing the gas pedal or by depressing the clutch pedal. Within the scope of this automatic start, starting current relay KA is initially switched on again in order to smoothly set starter motor M in motion. At a time thereafter, main current relay KH is switched on, with starting current relay KA still switched on. Subsequently, starting current relay KA is initially switched off, then main current relay KH is switched off, and lastly, solenoid switch ES is switched off.
b illustrates a second exemplary embodiment of an automatic start carried out within the scope of the start-stop operation. In this second exemplary embodiment, within the scope of a stopping operation the drive pinion initially meshes with the annular gear while the engine is still coasting. Starting current relay KA is switched on first in order to smoothly set starter motor M in motion. Subsequently, starting current relay KA is switched off. At a time thereafter, solenoid switch ES is switched on in order to mesh the drive pinion with the annular gear. At a time thereafter, with solenoid switch ES still switched on, the automatic start is carried out, which is initiated, for example, by depressing the gas pedal or by depressing the clutch pedal. Within the scope of this automatic start, the starting current relay KA is initially switched on again in order to smoothly set starter motor M in motion. Starting current relay KA is subsequently switched off again, with solenoid switch ES still switched on. At a time thereafter, main current relay KH is switched on in order to drive starter motor M with full force. Subsequently, main current relay KH is switched off, and lastly, solenoid switch ES is switched off.
c illustrates a third exemplary embodiment of an automatic start carried out within the scope of the start-stop operation. In this third exemplary embodiment, within the scope of a stopping operation the drive pinion initially meshes with the annular gear while the engine is still coasting. Solenoid switch ES is switched on in order to mesh the drive pinion with the annular gear. At a time thereafter, with solenoid switch ES still switched on, the automatic start is carried out, which is initiated, for example, by depressing the gas pedal or by depressing the clutch pedal. Within the scope of this automatic start, with solenoid switch ES still switched on, main current relay KH is switched on in order to drive starter motor M with full force. At a time thereafter, main current relay KH is switched off, and then solenoid switch ES is switched off. In this third exemplary embodiment, the drive pinion meshes while the engine is coasting, without prior cranking of starter motor M via the starting current relay and series resistor RV.
In the exemplary embodiments described in
Optionally, the exemplary embodiments described in
a and 12b illustrate one example of a simplified system in which starting current relay KA and series resistor RV are not provided, and the starting is carried out using main current relay KH.
In the examples described above with reference to
As described above or as an alternative thereto, the control unit may carry out the sequence of energizing the relays as follows:
Control unit 5 energizes meshing module EM and switching module SM in such a way that meshing module EM is energized in a first step, and switching module SM is subsequently energized in a second step. Solenoid switch ES of meshing module EM is preferably energized in the first step, and starting current relay KA and main current relay KH of switching module SM are subsequently energized in the second step, starting current relay KA being initially energized, and main current relay KH being subsequently energized.
Alternatively, control unit 5 energizes meshing module EM and switching module SM in such a way that solenoid switch ES of meshing module EM is energized in a first step, and main current relay KH of switching module SM is subsequently energized in a second step.
Another alternative is for control unit 5 to energize meshing module EM and switching module SM in such a way that switching module SM is energized in a first step, and meshing module EM is subsequently energized in a second step.
A further alternative is for control unit 5 to energize meshing module EM and switching module SM in such a way that starting current relay KA of switching module SM is energized in a first step, and solenoid switch ES of meshing module EM is subsequently energized in a second step.
A further alternative is for control unit 5 to energize meshing module EM and switching module SM in such a way that main current relay KH of switching module SM is energized in a first step, and solenoid switch ES of meshing module EM is subsequently energized in a second step.
Number | Date | Country | Kind |
---|---|---|---|
102009028294.7 | Aug 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/058203 | 6/11/2010 | WO | 00 | 4/13/2012 |