Device for storing and/or treating chemicals

Information

  • Patent Grant
  • 6475443
  • Patent Number
    6,475,443
  • Date Filed
    Monday, April 27, 1998
    26 years ago
  • Date Issued
    Tuesday, November 5, 2002
    22 years ago
Abstract
A device for storing and/or treating chemicals is described. The device includes a glass casing provided with a receiving cavity for storing chemicals therein, and further includes a transponder having a memory, the transponder being arranged in the device such that it cannot be affected by the chemicals.
Description




This application claims the priority of Dutch Patent Application No. 1005914 filed Apr. 28, 1997, which is incorporated herein by reference.




FIELD OF THE INVENTION




The present invention relates to a device for storing and/or treating chemicals, comprising a casing which is made of glass and is provided with a receiving cavity for storing chemicals therein.




BACKGROUND OF THE INVENTION




Devices for storing and/or treating chemicals are utilized in bulk quantities by the chemical industry, research laboratories, medical laboratories and like institutes. The known devices include, for instance, sampling tubes as described in Dutch patent application NL-A-1003492, a sample bottle or vial, a test tube or blood tube, a Petri dish, and HPLC column, or like devices comprising a glass casing provided with a receiving cavity for storing chemicals therein.




Often, it is a problem to record what is stored in a known device and under what conditions storage occurred. Thus, it happens regularly in hospitals that tubes of blood are mixed up and so the results of the blood test are linked with the wrong patient. With sampling tubes that are used specifically for taking samples from gases, such as, for instance, the atmosphere, it is necessary to record under what conditions the samples were taken. Pressure, temperature, air humidity and like data are of direct influence on the concentrations of the samples that are taken. Since these sampling activities often take place in the absence of attendant personnel, there is no opportunity of registering this kind of data, so that other solutions to resolve these problems have been realized. In sampling the atmosphere, sometimes use is made of a special pump which keeps the pressure, temperature, and humidity of the air which is passed through the sampling tube at a constant value. Such a pump is particularly costly and would not be necessary if the data of the atmospheric pressure, the air humidity, the temperature and the like were known. In other absorption processes, too, such data play an important role. In the case of, for instance, a high performance liquid chromatography (HPLC) column, keeping record of the measurements performed is a labor-intensive job which can easily lead to errors.




SUMMARY OF THE INVENTION




The object of the invention is to provide a device of the type defined in the opening paragraph hereof, without the above-mentioned drawbacks. To that end, according to the invention, the device is characterized in that it comprises a transponder including a memory, the transponder being arranged in the device such that it cannot be affected by the chemicals. The transponder can be designed in a variety of ways. Thus, it can be provided with a memory in which only a fixed number is stored. The data to be stored in relation to the chemicals received in a given device are stored in a central computer with reference to the identification number stored in the transponder.




Such a solution is practical in particular when the location where the chemicals are received in the receiving cavity of the casing of the device is in the proximity of the central computer in which the data of interest are stored. There are many applications, however, where measurement occurs remote from a central computer and hence no freely available memory for storing these data is present. In that case, according to a further elaboration of the invention, it is particularly favorable when the transponder is provided with programmable memory. In that case, data observed in situ can be stored in the memory of the transponder and read out by a central computer at a later time. Optionally, the transponder can contain control data on the basis of which processing apparatus can be driven.




According to a further elaboration of the invention, the transponder is melted-in in a closed glass housing which constitutes an inseparable part of the device. Owing to the presence of the glass housing, such a transponder cannot be contaminated or destroyed by the chemicals received in the receiving cavity of the device.




Further elaborations of the invention are described in the subclaims and will hereinafter be further clarified with reference to the drawing, on the basis of a number of exemplary embodiments.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a cross-sectional view of a first exemplary embodiment of a sample vial;





FIG. 2

shows a similar cross-sectional view of a second exemplary embodiment of a sample vial;





FIG. 3

shows a cross-sectional view of a test tube according to a first embodiment;





FIG. 4

shows a cross-sectional view of a test tube according to a second embodiment;





FIG. 5

shows a section taken on line V—V in

FIG. 4

;





FIG. 6

shows a cross-sectional view of a sampling tube according to a first exemplary embodiment;





FIG. 7

shows a cross-sectional view of an HPLC column according to a first embodiment;





FIG. 8

shows a detail of the HPLC column represented in

FIG. 7

;





FIG. 9

shows a cross-sectional view of a second embodiment of an HPLC column; and





FIG. 10

shows a detail of the HPLC column represented in FIG.


9


.











DETAILED DESCRIPTION OF THE INVENTION




The exemplary embodiment of a sampling vial shown in

FIG. 1

comprises a casing


1


made of glass. The casing


1


comprises a receiving cavity


2


for receiving chemicals therein. The vial further comprises a transponder


3


. The transponder is melted-in in a closed glass housing


4


. The glass housing


4


is inseparably connected to the device through a fastening column


5


. The closed glass housing


4


is fused onto the fastening column


5


. The transponder


3


accommodated in the glass housing comprises a chip


6


and an antenna


7


. In the subject case, the antenna is designed as a coil-shaped element. The coil-shaped element is wound around a rod


8


of conducting material to enhance the antenna function. The chip


6


contains a memory. In the present exemplary embodiment and in all exemplary embodiments of the transponder


3


to be discussed hereinafter, the transponder can contain a so-called resonant circuit. The transponder can be of the transmission type and hence actively transmit signals in return, or of the adsorption type, whereby, as a result of the presence of an internal resistance, which is optionally variable, also a message can be issued. Such a resonant circuit is generally provided with a coil and a capacitance.




The exemplary embodiment of a sample vial represented in

FIG. 2

likewise comprises a casing


9


of glass, including a receiving cavity


10


. The receiving cavity


10


is intended for receiving chemicals therein. The casing


9


additionally comprises a closed receiving cavity


11


accommodating a transponder


3


in a glass housing


4


. The transponder


3


is of the same type as represented in FIG.


1


and is loosely received in the cavity


11


. Since the cavity


11


is a closed space, the transponder


3


constitutes an inseparable part of the device.





FIG. 3

shows a test tube or blood tube


12


which is provided with a transponder


3


. The test tube comprises a casing


13


made of glass, and a receiving cavity


14


. Provided in the receiving cavity


14


is a fastening column


15


by which the transponder


3


, via the glass housing


4


, is fixedly connected to the casing


13


.





FIG. 4

shows an alternative exemplary embodiment of a test tube


35


, likewise comprising a glass casing


16


and a receiving cavity


17


. Provided in the sidewall of the casing


16


is a recess


18


in which the transponder


3


accommodated in a glass housing


4


is received with a proper fit. Optionally, attachment can be ensured by some kit, or the two housings


16


and


4


can be connected to each other in that they are fused onto each other.





FIG. 5

shows the cross-sectional view taken along line V—V in FIG.


4


.

FIG. 5

clearly shows in what way the recess


18


is provided in the wall of the glass casing


16


.





FIG. 6

shows an exemplary embodiment of a sampling tube


19


. In the exemplary embodiment shown, the sampling tube is received in a package


20


which is made of glass. The sampling tube


19


is closed at both ends with a Teflon cap


21


,


22


. Further, in a receiving cavity


19


a of the sampling tube


19


made of glass, absorption material


23


is received, confined between two sieves


24


,


25


. Disposed on the left of the left-hand sieve


25


is a transponder


3


which is accommodated in a glass housing


4


. The transponder


3


is fixed in this position by a third sieve


26


made of metal. Preferably, the transponder


3


can resist a high temperature for some time, so that the absorption material can be regenerated and the sampling tube can be reused. The packaging tube


20


is closed at the end


27


, for instance in that it is melted up. Preferably, the packaging tube


20


is filled with inert gas, so that the absorption material


23


is not contaminated. If the packaging tube


20


were absent, the absorption material


23


, in the course of time, would be subject to contamination by air entering through the Teflon caps


21


,


22


.





FIG. 7

shows a cross-sectional view of an HPLC (high performance liquid chromatography) column. Such a column


28


comprises a casing


29


made of glass. The glass casing


29


includes a receiving cavity


29




a


which is at least partly filled with separation material


30


. The ends of the glass casing


29


are provided with coupling elements


31


,


32


, by means of which the HPLC column can be installed in a chromatograph. In the present exemplary embodiment, the transponder


3


, disposed in a glass housing


4


, is embedded in the separation material


30


. Although the drawing figure suggests that the transponder


3


completely closes off the channel


29




a


in which the separation material


30


is disposed, this is not the case. The separation material


30


has very small pores, so that the carrier liquid must be forced through the separation material


30


at a very high pressure. The clearance between the inner walls of the glass casing


29


and the circumferential wall of the glass housing


4


of the transponder


3


is particularly large in proportion to the pore size, so that the transponder


3


hardly constitutes a constriction in the channel


29




a


of the column


28


. optionally, the channel


29




a


in which the separation material


30


is disposed can be provided with a slightly greater diameter.





FIGS. 9 and 10

show an alternative design of an HPLC column


28


according to the invention, in which use is made of a different type of transponder. A track


33


of conductive material has been applied in a spiral configuration to the external circumferential surface of the glass casing


29


by a vapor deposition technique. Vapor deposition of metal ions on glass is a technique known per se. The spiral track


33


of conductive material is connected to a transponder chip


34


embedded in the casing


29


made of glass.




It is noted that the invention is not limited to the exemplary embodiments described, but that various modifications are possible within the scope of the invention. Thus, for instance, a Petri dish could equally be fitted with a transponder. Basically any glassware intended for storing and/or treating chemicals, where the recordal of data regarding those chemicals is essential, is eligible for incorporation of a transponder. To date, the transponders, which are known per se, have been used solely for identifying animals or recording data in a chip card and the like. The idea of utilizing these transponders in glassware which is generally utilized as being disposable yields an entirely new range of possibilities, which can lead to enormous savings during use of the glassware.



Claims
  • 1. A device for storing and/or treating chemicals, comprising:a casing in the form of a vial which is made of glass and is provided with a receiving cavity for storing chemicals therein; and a transponder including a memory, the transponder being enclosed in a closed glass housing such that it cannot be affected by the chemicals, the closed glass housing being inseparably connected to the device such that it constitutes an inseparable part of the device, wherein the inseparable connection between the closed glass housing and the vial casing is effected by a column of which one end is connected to the inner side of the casing wall in the receiving cavity.
  • 2. A device according to claim 1 characterized in that the transponder comprises an antenna.
  • 3. A device according to claim 2 characterized in that the antenna is provided on the glass casing by a vapor deposition technique.
  • 4. A device according to claim 3, characterized in that the vapor-deposited antenna is designed as a layer of metal ions vapor-deposited in a spiral path.
  • 5. A device according to claim 2 characterized in that the antenna is designed as a coil-shaped element accommodated in the glass housing.
  • 6. A device according to claim 1, characterized in that the memory of the transponder is programmable.
  • 7. A device according to claim 6, characterized in that the memory of the transponder contains a non-erasable identification number.
  • 8. A device for storing and/or treating chemicals, comprising:a casing in the form of a vial which is made of glass and is provided with a first receiving cavity for storing chemicals therein; and a transponder including a memory, the transponder being inseparably connected to the device such that it constitutes an inseparable part of the device, wherein an inseparable connection between the casing and the transponder is effected in that the vial casing comprises an inner vial and an outer vial wherein the transponder is accommodated in a closed second receiving cavity between the inner vial and the outer vial.
Priority Claims (1)
Number Date Country Kind
1005914 Apr 1997 NL
US Referenced Citations (15)
Number Name Date Kind
4074824 Kontes Feb 1978 A
4154690 Ballies May 1979 A
4572067 Fischer Feb 1986 A
4857893 Carroll Aug 1989 A
5008661 Raj Apr 1991 A
5121748 Ditz et al. Jun 1992 A
5211129 Taylor et al. May 1993 A
5252962 Urbas et al. Oct 1993 A
5566441 Marsh et al. Oct 1996 A
5574230 Baugh Nov 1996 A
5632168 Yano May 1997 A
5880675 Trautner Mar 1999 A
5930145 Yuyama et al. Jul 1999 A
5961923 Nova et al. Oct 1999 A
6100026 Nova et al. Aug 2000 A
Foreign Referenced Citations (15)
Number Date Country
2508201 Sep 1976 DE
43 01 401 Jul 1994 DE
94 16 270.0 Dec 1994 DE
19518936 Dec 1995 DE
4439914 May 1996 DE
19510458 Sep 1996 DE
619246 Oct 1994 EP
0 635 305 Jan 1995 EP
0 637 750 Feb 1995 EP
706825 Apr 1996 EP
2 555 744 May 1985 FR
2-215465 Aug 1990 JP
8-150191 Jun 1996 JP
8-204609 Aug 1996 JP
8908264 Sep 1989 WO
Non-Patent Literature Citations (1)
Entry
Sargent-Welch Catalog 1984, pp. 1337-1343 and 1400-1403, Jul. 1985.