This application is the U.S. national phase of International Application No. PCT/NO2006/000330 filed 25 Sep. 2006 which designated the U.S. and claims priority to Norwegian Application No. 20054447 filed 26 Sep. 2005, the entire contents of each of which are hereby incorporated by reference.
The present invention relates to devices for storage of tubulars on board a floating vessel as stated in the preamble of claim 1. It also relates to apparatuses for handling tubulars between a storage device and a derrick as stated in the preamble of claims 7 and 9.
Offshore oil and gas exploration and production is dependent on drilling from floating semisubmersible platforms or drillships. Many drilling units were built in the 70's for drilling in water depths down to 1500 ft (500 meters) (2nd and 3rd generation), while as exploration has gone deeper, a number of drilling units have later been built for and operate in water depths beyond 5000 ft (1500 meters), the water depth record now standing at app. 10000 ft (3000 meters) (“ultra deep water”) (4th and 5th generation).
Down to app. 5000 ft, the rigs may be moored by combinations of chain and steel wire or synthetic rope, while in deeper water the drilling units are primarily kept in position by azimuth thruster propellers and dynamic positioning. Due to their high deck load capacity and suitability for dynamic positioning, the majority of ultra deep water drilling units is drill ships.
The drilling units utilize a 21″ (533.5 mm) diameter steel riser to circulate drilling mud and cuttings back to surface for well control, cleaning and recirculation. The riser is bolted or clamped together from 50 to 80 ft (15-24 meters) long joints, typically equipped with syntactic foam buoyancy to obtain close to neutral weight in seawater.
Typically, the riser joints are individually added to or taken off the riser string on the drill floor, while the suspended lower part of the riser string, including blow out preventer (BOP), is hung off on a spider placed above the rotary table (the opening in the drillfloor which allows running of drill string and other tubulars). Riser joints are typically transported by crane or other pipe handling equipment to horizontal storage on deck, or to vertical or slanted storage racks at or above deck level. In either case, the drilling unit must provide space, buoyancy and stability for a large volume of riser pipe.
The higher day rates achieved in the market by the 4th and 5th generation deepwater drilling units makes upgrade of units with shallow water capacity an attractive option.
All deepwater upgrades mean more weight on the rig, and increased payload requirements. It is also evident that the biggest bottleneck in the utilization of a floating vessel is the riser storage volume and weight.
Current 4th generation deepwater rigs have displacements up to twice that of the bulk of shallow water (1500 ft w.d) (500 meters water depth) rigs, with associated higher building costs.
There are known several different storage and handling systems for tubulars. Some of these are aimed at shifting the storage volume and weight distribution to a lower level in order to improve stability.
U.S. Pat. No. 3,339,747 shows a pipe rack for well drilling apparatus, wherein a pipe well for vertical storage of pipes is suspended from a drilling platform. The pipe well incorporates a wedge type of arrangement in the bottom for vertical movement of the risers.
U.S. Pat. No. 3,987,910 shows an apparatus for racking drill pipes on floater type platforms. This is an X-Y racking apparatus combined with a container located in the substructure area of the floating platform for supporting the pipes. In one embodiment the container is of a closed type for use on a drill ship. It protrudes below sea level, and also below the bottom of the hull to achieve greater stability. In another embodiment the container is of a structural kind for use on a semi-submersible, arranged at an elevation where medium severe waves will not have hard impact on the container.
The above system is very similar to the riser storage and handling system Borgland Dolphin, Bideford Dolphin and a number of other rigs.
U.S. Pat. No. 6,250,395 shows an apparatus system and method for installing and retrieving pipe in a well. The described system for storing and deploying long strings of jointed pipe adjacent to the drilling rig, is aiming at reducing the time spent to assemble and disassemble the pipe strings and also to reduce the payload requirements for the floating rig. The system incorporates a method to run the pipe string along a curvature higher than the yielding radius of the pipe, through more than 90 degrees, that is, from the vertical well to horizontal or vertical position, to be stored in water. Storage in water may be achieved in many forms, inside or outside carrier pipes, vertical or horizontal, suspended from rig or buoyed off on surface or in mid-water.
In this patent long sections of pipe string made up by assembling multiple joints end to end is moved over a large radius ramp from position in or above the well to a horizontally (through app. 90 degrees) or a vertically (through app. 180 degrees) submerged storage.
U.S. Pat. No. 2,606,003 shows a system for drilling from a floating drilling unit, incorporating a marine riser with two flexible joints and a slip joint (now standard marine riser technology), incorporating as a secondary feature, a storage container which is mounted within and extends below the floating barge to provide for the substantially vertical storage of drill pipe. The mounting of the pipe storage container places the contained pipe principally below the deck of the barge, thereby lowering the centre of gravity of the barge and tending to stabilize the barge under wave action.
U.S. Pat. No. 6,766,860 shows a system and means for hanging off an assembled string of tubulars (such as a full riser string) and skidding it away from the rotary to allow well operations outside the riser (such as running X-mas tree).
U.S. Pat. No. 6,524,049 shows a semi-submersible mobile drilling vessel with storage shaft for tubular drilling equipment, which is incorporating vertical storage of drilling tubulars inside one or more columns. This arrangement is being implemented two new Amethyst designs for Petrobras, providing storage for 24 pieces of 65 ft length 21″ riser joints.
U.S. Pat. No. 4,646,672 shows a semi-submersible vessel incorporating a centrally located buoyant caisson with internal drilling moonpool and provisions for vertical riser storage inside the caisson.
This arrangement has been used on Transocean's Jack Bates, a Friede & Goldman L-1020 Trendsetter built 1986 in Japan for vertical storage of 87 joints of 60′ long 21″ riser.
U.S. Pat. No. 4,708,563 shows a platform with a plurality of cylindrical storage devices suspended from the platform deck. A retrieving device is running between the storage devices and the derrick to retrieve tubulars. The tubulars are guided along a ramp when they are retrieved. In each storage device is a turret in which the tubulars are suspended. The tubulars can thereby be rotated to a retrieving position.
U.S. Pat. No. 4,762,185 shows a vessel with two cylindrical storage devices within a circular hull. The tubulars are suspended in a rotatable magazine. Above each storage device is provided a trolley with a guiding ring, through which the tubulars are guided. The tubulars are lifted by the hoisting apparatus in the derrick.
The main object of the present invention is an efficient conversion of a 2nd or 3rd generation shallow water rated drilling semi-submersible rigs to deep water operations. This is achieved by mounting one or more tubular storage shafts to the rig as defined by the subsequent claim 1.
The shafts are preferably extending from the pontoon to deck level, each shaft incorporate facilities for vertical storage of riser joints. The riser storage arrangement lowers the centre of gravity of the stored risers, allowing better utilization of the rigs variable deck load capacity. Furthermore, deck storage area normally dedicated to riser storage is released for other purposes. As an additional effect, the shaft stability of the rig, and the shafts may be fitted with additional features such as liquid mud storage.
These and other features of the invention are evident from the dependent claims.
In addition to the storage columns, the invention includes devices for efficient handling of the riser joints between the drill centre to the riser storage areas.
The invention will be explained in further detail, referring to the accompanying drawings that show exemplary embodiments of the invention, wherein:
a shows a detail of a storage device according to the present invention in plan view and in a first embodiment of the storage device,
b shows a second embodiment of the storage device,
a and 4b show a detail of the catwalk of the present invention in side elevation view, shown in horizontal and vertical position, respectively,
c-e show the insertion and lifting of a tubular into the derrick,
f shows the catwalk in cross section,
Referring to
Close to the derrick 5 is situated a catwalk 12. The catwalk 12, the cranes 7 and the storage shafts 8, 9, 10, 11 are designed to co-operate in the handling of tubulars to and from the derrick 5.
In
b shows an alternative guiding means for the tubes in the shaft 22 is arranged moveable along a beam 23. The beam 23 forms a part of a trolley 24 that is moveable on tracks 25 at either side of the storage shaft 9. The tubulars 13 may also here be arranged in two concentric circles 19, 20 in the shaft 9. The guide 22 is capable of movement in x and y directions over the whole top of the shaft to be positioned over a selected one of the tubulars.
a shows the catwalk 12 and the lower part of the derrick 5. The catwalk 12 is a transporter that is adapted to feed pipes horizontally into the derrick 5 through a V-door (not shown) in the derrick 5. In
The catwalk of the present invention is designed to be tilted into a vertical position, as shown in
f shows a cross section of the catwalk in
In the framework beam is placed a skid 42 that can slide along the beam 40. The skid comprises a pipe bed 43 on which a tubular 26 may be placed. The skid has side supports 44, which at their free ends are equipped with rollers 45 that can be brought to engagement with the tubular 26 to prevent the tubular form moving out of the skid 42. When the tubular 26 is to be positioned on the skid 42 or lifted off from the skid 42, the rollers may be lifted to the position denoted by reference number 45′.
To grip the pipe, a head 34 on the grapple 27 is inserted in the pipe 26 at the end thereof. A set of dogs 35 is designed to grip a flange of the pipe (not shown). The dogs are operated hydraulically in a manner known per se, involving a ring 36 that is moved into and out of engagement with the dogs 36 by a set of hydraulic cylinders 37. In
The grapple 27 is designed to grip the pipe when the pipe is in a substantially vertical position. The pipe will be handled substantially vertically as the joints 29 and 31 are capable holding the grapple 27 in a vertical position. Due to wave induced movement of the rig 1, wind forces and unforeseen collisions with objects on the rig, excess forces may be imparted on the pipe, and hence the grapple. In order to avoid damage to the grapple 27, the grapple 27 is equipped with a hydraulic shear means. The shear means may be in the form of a relief valve releasing the hydraulic pressure at the joints 29 and 31, as known per se.
The function of the devices described above will now be explained.
The pipes, e.g., riser joints, are stored in the shafts 8, 9, 10, 11 at different locations along the perimeter of the deck 3. When a riser joint is to be used, one of the cranes 7, being the one covering the area of the shaft in which the riser joint is stored, e.g., the shaft 8, is driven to the shaft 8. At the same time the funnel 15 is brought to a position immediately above the riser joint. The grapple 27 is lowered into the funnel 15 and grips the riser joint.
If the riser joint is stored in a shaft 9 of the type shown in
The joints 29 and 31 of the grapple 27 are controlled so that the grapple is held in a substantially vertical position at all times. The booms of the knuckle boom crane 7 are also configured, as known per se, to move the grapple 27 along a vertical line. Hence, the riser joint may be extracted vertically out of the shaft 8.
The riser joint is then brought in the vertical position to the catwalk 12. The catwalk 12 is brought to the vertical position shown in
When the tubular is to be returned from the derrick 5 to the shaft 8, 9, 10, 11, the sequence is the opposite of the above.
Number | Date | Country | Kind |
---|---|---|---|
20054447 | Sep 2005 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2006/000330 | 9/25/2006 | WO | 00 | 3/26/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/035113 | 3/29/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2999549 | Stratton | Sep 1961 | A |
3268092 | Hainer et al. | Aug 1966 | A |
3706347 | Brown | Dec 1972 | A |
3981369 | Bokenkamp | Sep 1976 | A |
3987910 | Brunato | Oct 1976 | A |
4044895 | Adair | Aug 1977 | A |
4320915 | Abbott et al. | Mar 1982 | A |
4621974 | Krueger | Nov 1986 | A |
4660729 | Carbert | Apr 1987 | A |
4708563 | Van Den Berg et al. | Nov 1987 | A |
4725179 | Woolslayer et al. | Feb 1988 | A |
4762185 | Simpson | Aug 1988 | A |
4818172 | Johnson | Apr 1989 | A |
4834604 | Brittain et al. | May 1989 | A |
6089333 | Rise | Jul 2000 | A |
6524049 | Minnes | Feb 2003 | B1 |
6601531 | Baylot et al. | Aug 2003 | B1 |
20030155154 | Oser | Aug 2003 | A1 |
20030159854 | Simpson et al. | Aug 2003 | A1 |
20050173154 | Lesko | Aug 2005 | A1 |
20080053704 | Zachariasen et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2 419 885 | Aug 2003 | CA |
9856652 | Dec 1998 | WO |
WO 9931346 | Jun 1999 | WO |
2006068497 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090136327 A1 | May 2009 | US |